ﻻ يوجد ملخص باللغة العربية
Ambient Backscatter Communication (AmBC) is an emerging communication technology that can enable green Internet-of-Things deployments. The widespread acceptance of this paradigm is limited by low Signal-to-Interference-Plus-Noise Ratio (SINR) of the signal impinging on the receiver antenna due to the strong direct path interference and unknown ambient signal. The adverse impact of these two factors can be mitigated by using non-coherent multi-antenna receivers, which is known to require higher SINR to reach Bit-Error-Rate (BER) performance of coherent receivers. However, in literature, coherent receivers for AmBC systems are little-studied because of unknown ambient signal, unknown location of AmBC tags, and varying channel conditions. In this paper, a coherent multi-antenna receiver, which does not require a prior information of the ambient signal, for decoding Binary-Phase-shift-Keying (BPSK) modulated signal is presented. The performance of the proposed receiver is compared with the ideal coherent receiver that has a perfect phase information, and also with the performance of non-coherent receiver, which assumes distributions for ambient signal and phase offset caused by excess length of the backscatter path. Comparative simulation results show the designed receiver can achieve the same BER-performance of the ideal coherent receiver with 1-dB more SINR, which corresponds to 5-dB or more gain with respect to non-coherent reception of On-Off-Keying modulated signals. Variation of the detection performance with the tag location shows that the coverage area is in the close vicinity of the transmitter and a larger region around the receiver, which is consistent with the theoretical results.
Ambient backscatter communication (AmBC) is becoming increasingly popular for enabling green communication amidst the continual development of the Internet-of-things paradigm. Efforts have been put into backscatter signal detection as the detection p
Ambient backscatter communication (AmBC) leverages the existing ambient radio frequency (RF) environment to implement communication with battery-free devices. The key challenge in the development of AmBC is the very weak RF signals backscattered by t
For smart clothing integration with the wireless system based on radio frequency (RF) backscattering, we demonstrate an ultra-high frequency (UHF) antenna constructed from embroidered conductive threads. Sewn into a fabric backing, the T-match antenn
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor
Ambient backscatter communications is an emerging paradigm and a key enabler for pervasive connectivity of low-powered wireless devices. It is primarily beneficial in the Internet of things (IoT) and the situations where computing and connectivity ca