ﻻ يوجد ملخص باللغة العربية
Billiard systems, broadly speaking, may be regarded as models of mechanical systems in which rigid parts interact through elastic impulsive (collision) forces. When it is desired or necessary to account for linear/angular momentum exchange in collisions involving a spherical body, a type of billiard system often referred to as no-slip has been used. In recent work, it has become apparent that no-slip billiards resemble non-holonomic mechanical systems in a number of ways. Based on an idea by Borisov, Kilin and Mamaev, we show that no-slip billiards very generally arise as limits of non-holonomic (rolling) systems, in a way that is akin to how ordinary billiards arise as limits of geodesic flows through a flattening of the Riemannian manifold.
Louis Poinsot has shown in 1854 that the motion of a rigid body, with one of its points fixed, can be described as the rolling without slipping of one cone, the body cone, along another, the space cone, with their common vertex at the fixed point. Th
We identify all translation covers among triangular billiard surfaces. Our main tools are the holonomy field of Kenyon and Smillie and a geometric property of translation surfaces, which we call the fingerprint of a point, that is preserved under balanced translation covers.
The dancing metric is a pseudo-riemannian metric $pmb{g}$ of signature $(2,2)$ on the space $M^4$ of non-incident point-line pairs in the real projective plane $mathbb{RP}^2$. The null-curves of $(M^4,pmb{g})$ are given by the dancing condition: the
We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kin
In this note, we consider generalizations of the asymptotic Hopf invariant, or helicity, for Hamiltonian systems with one-and-a-half degrees of freedom and symplectic diffeomorphisms of a two-disk to itself.