ﻻ يوجد ملخص باللغة العربية
Louis Poinsot has shown in 1854 that the motion of a rigid body, with one of its points fixed, can be described as the rolling without slipping of one cone, the body cone, along another, the space cone, with their common vertex at the fixed point. This description has been further refined by the second author in 1996, relating the geodesic curvatures of the spherical curves formed by intersecting the cones with the unit sphere in Euclidean $mathbb{R}^3$, thus enabling a reconstruction of the motion of the body from knowledge of the space cone together with the (time dependent) magnitude of the angular velocity vector. In this article we show that a similar description exists for a time dependent family of unimodular $ 2 times 2 $ matrices in terms of rolling cones in 3-dimensional Minkowski space $mathbb{R}^{2,1}$ and the associated pseudo spherical curves, in either the hyperbolic plane $H^2$ or its Lorentzian analog $H^{1,1}$. In particular, this yields an apparently new geometric interpretation of Schrodingers (or Hills) equation $ ddot x + q(t) x =0 $ in terms of rolling without slipping of curves in the hyperbolic plane.
We study a simple model of bicycle motion: a segment of fixed length in multi-dimensional Euclidean space, moving so that the velocity of the rear end is always aligned with the segment. If the front track is prescribed, the trajectory of the rear wh
We establish a simple relation between curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to
A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,infty)times Y$ which do not diffract high frequency waves. We prove that if $Y$ is anal
Billiard systems, broadly speaking, may be regarded as models of mechanical systems in which rigid parts interact through elastic impulsive (collision) forces. When it is desired or necessary to account for linear/angular momentum exchange in collisi
We study the Schrodinger equation on a flat euclidean cone $mathbb{R}_+ times mathbb{S}^1_rho$ of cross-sectional radius $rho > 0$, developing asymptotics for the fundamental solution both in the regime near the cone point and at radial infinity. The