ترغب بنشر مسار تعليمي؟ اضغط هنا

Solution of Burger Equation with Viscosity Applying the Boundary Layer Theory

85   0   0.0 ( 0 )
 نشر من قبل Oscar Martinez Nu\\~nez
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we find the solution of the Burger equation with viscosity applying the boundary layer theory. In addition, we will observe that the solution of Burger equation with viscosity converge to the solution of Burger stationary equation in the norm of $L_{2}([-1,1])$.



قيم البحث

اقرأ أيضاً

In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that arises as the counterpart of a non-negativity constraint on the solution at each time. Although the uniqueness of viscosity solutions is known for many variants of Hamilton-Jacobi equations, the uniqueness for this particular type of constrained problem was not resolved, except in a few particular cases. Here, we provide a general answer to the uniqueness problem, based on three main assumptions: convexity of the Hamiltonian function H(I, x, p) with respect to p, monotonicity of H with respect to I, and BV regularity of I(t).
In this paper, a class of nonlinear option pricing models involving transaction costs is considered. The diffusion coefficient of the nonlinear parabolic equation for the price $V$ is assumed to be a linear function of the options underlying asset pr ice and the Gamma Greek $V_{xx}$. The main aim of this work is to study the governing PDE of the Delta Greek. The existence of viscosity solutions is proved using the vanishing viscosity method. Regularizing the equation by adding a small perturbation to the initial problem, a sequence of approximate solutions $u^{varepsilon}$ is constructed and then the method of weak limits is applied to prove the convergence of the sequence to the viscosity solution of the Delta equation. The approximate problems constructed are shown to have good regularity, which allows the use of efficient and robust numerical methods.
In the case of favorable pressure gradient, Oleinik proved the global existence of classical solution for the 2-D steady Prandtl equation for a class of positive data. In the case of adverse pressure gradient, an important physical phenomena is the b oundary layer separation. In this paper, we prove the boundary layer separation for a large class of Oleiniks data and confirm Goldsteins hypothesis concerning the local behavior of the solution near the separation, which gives a partial answer to open problem 5 proposed by Oleinik and Samokin in cite{Olei}.
We study the weak boundary layer phenomenon of the Navier-Stokes equations in a 3D bounded domain with viscosity, $epsilon > 0$, under generalized Navier friction boundary conditions, in which we allow the friction coefficient to be a (1, 1) tensor o n the boundary. When the tensor is a multiple of the identity we obtain Navier boundary conditions, and when the tensor is the shape operator we obtain conditions in which the vorticity vanishes on the boundary. By constructing an explicit corrector, we prove the convergence of the Navier-Stokes solutions to the Euler solution as the viscosity vanishes. We do this both in the natural energy norm with a rate of order $epsilon^{3/4}$ as well as uniformly in time and space with a rate of order $epsilon^{3/8 - delta}$ near the boundary and $epsilon^{3/4 - delta}$ in the interior, where $delta, delta$ decrease to 0 as the regularity of the initial velocity increases. This work simplifies an earlier work of Iftimie and Sueur, as we use a simple and explicit corrector (which is more easily implemented in numerical applications). It also improves a result of Masmoudi and Rousset, who obtain convergence uniformly in time and space via a method that does not yield a convergence rate.
This paper is concerned with the existence and the regularity of global solutions to the linear wave equation associated with two-point type boundary conditions. We also investigate the decay properties of the global solutions to this problem by the construction of a suitable Lyapunov functional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا