ترغب بنشر مسار تعليمي؟ اضغط هنا

The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions

75   0   0.0 ( 0 )
 نشر من قبل Alain Pham Ngoc Dinh
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with the existence and the regularity of global solutions to the linear wave equation associated with two-point type boundary conditions. We also investigate the decay properties of the global solutions to this problem by the construction of a suitable Lyapunov functional.



قيم البحث

اقرأ أيضاً

73 - Said Benachour 2006
Global classical solutions to the viscous Hamilton-Jacobi equation with homogenious Dirichlet boundary conditions are shown to converge to zero at the same speed as the linear heat semigroup when p > 1. For p = 1, an exponential decay to zero is also obtained in one space dimension but the rate depends on a and differs from that of the linear heat equation. Finally, if 0 < p < 1 and a < 0, finite time extinction occurs for non-negative solutions.
We give a detailed study of attractors for measure driven quintic damped wave equations with periodic boundary conditions. This includes uniform energy-to-Strichartz estimates, the existence of uniform attractors in a weak or strong topology in the e nergy phase space, the possibility to present them as a union of all complete trajectories, further regularity, etc.
In this paper we consider the initial value {problem $partial_{t} u- Delta u=f(u),$ $u(0)=u_0in exp,L^p(mathbb{R}^N),$} where $p>1$ and $f : mathbb{R}tomathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on th e initial data and for nonlinearity $f$ {such that $|f(u)|sim mbox{e}^{|u|^q}$ as $|u|to infty$,} $|f(u)|sim |u|^{m}$ as $uto 0,$ $0<qleq pleq,m,;{N(m-1)over 2}geq p>1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$
In this paper we analyze a nonlinear parabolic equation characterized by a singular diffusion term describing very fast diffusion effects. The equation is settled in a smooth bounded three-dimensional domain and complemented with a general boundary c ondition of dynamic type. This type of condition prescribes some kind of mass conservation; hence extinction effects are not expected for solutions that emanate from strictly positive initial data. Our main results regard existence of weak solutions, instantaneous regularization properties, long-time behavior, and, under special conditions, uniqueness.
We investigate the regularity of the free boundary for the Signorini problem in $mathbb{R}^{n+1}$. It is known that regular points are $(n-1)$-dimensional and $C^infty$. However, even for $C^infty$ obstacles $varphi$, the set of non-regular (or degen erate) points could be very large, e.g. with infinite $mathcal{H}^{n-1}$ measure. The only two assumptions under which a nice structure result for degenerate points has been established are: when $varphi$ is analytic, and when $Deltavarphi < 0$. However, even in these cases, the set of degenerate points is in general $(n-1)$-dimensional (as large as the set of regular points). In this work, we show for the first time that, usually, the set of degenerate points is small. Namely, we prove that, given any $C^infty$ obstacle, for almost every solution the non-regular part of the free boundary is at most $(n-2)$-dimensional. This is the first result in this direction for the Signorini problem. Furthermore, we prove analogous results for the obstacle problem for the fractional Laplacian $(-Delta)^s$, and for the parabolic Signorini problem. In the parabolic Signorini problem, our main result establishes that the non-regular part of the free boundary is $(n-1-alpha_circ)$-dimensional for almost all times $t$, for some $alpha_circ > 0$. Finally, we construct some new examples of free boundaries with degenerate points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا