ﻻ يوجد ملخص باللغة العربية
We study two-dimensional (2D) vortex quantum droplets (QDs) trapped by a thicker transverse confinement with a>1um. Under this circumstance, the Lee-Huang-Yang (LHY) term should be described by its original form in the three-dimensional (3D) configuration. Previous studies have demonstrated that stable 2D vortex QDs can be supported by a thin transverse confinement with a<<1um. In this case, the LHY term is described by a logarithm. Hence, two kinds of confinement features result in different mechanisms of the vortex QDs. The stabilities and characteristics of the vortex QDs must be re-identified. In the current system, we find that stable 2D vortex QDs can be supported with topological charge number up to at least 4. We reformulated their density profile, chemical potential and threshold norm for supporting the stable vortex QDs according to the new condition. Unlike the QDs under thin confinement, the QDs in the current system strongly repel each other because the LHY term features a higher-order repulsion than that of the thin confinement system. Moreover, elastic and inelastic collisions between two moving vortex QDs are studied throughout the paper. Two kinds of collisions can be characterized by exerting different values of related speed. The dynamics of the stable nested vortex QD, which is constructed by embedding one vortex QD with a smaller topological number into another vortex QD with a larger number of topological charge, can be supported by the system.
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize
This is an item in the View and Perspective category, which presents a brief overview of particular aspects of the topic of quantum droplets. It is linked to a new theoretical paper, Quantum droplets in two-dimensional optical lattices, which will be
This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) self-trapped states in Bose-Einstein condensates (BECs),
The structure and dynamics of one-dimensional binary Bose gases forming quantum droplets is studied by solving the corresponding amended Gross-Pitaevskii equation. Two physically different regimes are identified, corresponding to small droplets of an
We analyze the motion of quantum vortices in a two-dimensional spinless superfluid within Popovs hydrodynamic description. In the long healing length limit (where a large number of particles are inside the vortex core) the superfluid dynamics is dete