ترغب بنشر مسار تعليمي؟ اضغط هنا

A new form of liquid matter: quantum droplets

104   0   0.0 ( 0 )
 نشر من قبل Zhihuan Luo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) self-trapped states in Bose-Einstein condensates (BECs), which are stabilized by effective selffirepulsion induced by quantum fluctuations around the mean-field (MF) states [alias the Lee-Huang--Yang (LHY) effect]. The basic models are presented, taking special care of the dimension crossover, 2D -> 3D. Recently reported experimental results, which exhibit stable 3D and quasi-2D QDs in binary BECs, with the inter-component attraction slightly exceeding the MF self-repulsion in each component, and in single-component condensates of atoms carrying permanent magnetic moments, are presented in some detail. The summary of theoretical results is focused, chiefly, on 3D and quasi-2D QDs with embedded vorticity, as the possibility to stabilize such states is a remarkable prediction. Stable vortex states are presented both for QDs in free space, and for singular but physically relevant 2D modes pulled to the center by the inverse-square potential, with the quantum collapse suppressed by the LHY effect.



قيم البحث

اقرأ أيضاً

69 - Boris A. Malomed 2020
This is an item in the View and Perspective category, which presents a brief overview of particular aspects of the topic of quantum droplets. It is linked to a new theoretical paper, Quantum droplets in two-dimensional optical lattices, which will be published in Frontiers of Physics (Ref. [21] in the current preprint).
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive force s that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10^8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interactio n and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly-dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an effective cancellation of the total mean-field. The macroscopic state takes the form of so-called quantum droplets. We present the effects of a long-range dipolar interaction between these droplets.
We study two-dimensional (2D) vortex quantum droplets (QDs) trapped by a thicker transverse confinement with a>1um. Under this circumstance, the Lee-Huang-Yang (LHY) term should be described by its original form in the three-dimensional (3D) configur ation. Previous studies have demonstrated that stable 2D vortex QDs can be supported by a thin transverse confinement with a<<1um. In this case, the LHY term is described by a logarithm. Hence, two kinds of confinement features result in different mechanisms of the vortex QDs. The stabilities and characteristics of the vortex QDs must be re-identified. In the current system, we find that stable 2D vortex QDs can be supported with topological charge number up to at least 4. We reformulated their density profile, chemical potential and threshold norm for supporting the stable vortex QDs according to the new condition. Unlike the QDs under thin confinement, the QDs in the current system strongly repel each other because the LHY term features a higher-order repulsion than that of the thin confinement system. Moreover, elastic and inelastic collisions between two moving vortex QDs are studied throughout the paper. Two kinds of collisions can be characterized by exerting different values of related speed. The dynamics of the stable nested vortex QD, which is constructed by embedding one vortex QD with a smaller topological number into another vortex QD with a larger number of topological charge, can be supported by the system.
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize the dipolar droplet states in a one-dimensional context using a combination of analytical and numerical approaches, and identify experimentally viable parameters for accessing our findings for future experiments. In particular we identify regimes of stability in the restricted geometry, finding multiple roton instabilities as well as regions supporting quasi-one-dimensional droplet states. By applying an interaction quench to the droplet, a modulational instability is induced and multiple droplets are produced, along with bright solitons and atomic radiation. We also assess the droplets robustness to collisions, revealing population transfer and droplet fission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا