ترغب بنشر مسار تعليمي؟ اضغط هنا

Emotion-Based End-to-End Matching Between Image and Music in Valence-Arousal Space

175   0   0.0 ( 0 )
 نشر من قبل Sicheng Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Both images and music can convey rich semantics and are widely used to induce specific emotions. Matching images and music with similar emotions might help to make emotion perceptions more vivid and stronger. Existing emotion-based image and music matching methods either employ limited categorical emotion states which cannot well reflect the complexity and subtlety of emotions, or train the matching model using an impractical multi-stage pipeline. In this paper, we study end-to-end matching between image and music based on emotions in the continuous valence-arousal (VA) space. First, we construct a large-scale dataset, termed Image-Music-Emotion-Matching-Net (IMEMNet), with over 140K image-music pairs. Second, we propose cross-modal deep continuous metric learning (CDCML) to learn a shared latent embedding space which preserves the cross-modal similarity relationship in the continuous matching space. Finally, we refine the embedding space by further preserving the single-modal emotion relationship in the VA spaces of both images and music. The metric learning in the embedding space and task regression in the label space are jointly optimized for both cross-modal matching and single-modal VA prediction. The extensive experiments conducted on IMEMNet demonstrate the superiority of CDCML for emotion-based image and music matching as compared to the state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

The research of visual signal compression has a long history. Fueled by deep learning, exciting progress has been made recently. Despite achieving better compression performance, existing end-to-end compression algorithms are still designed towards b etter signal quality in terms of rate-distortion optimization. In this paper, we show that the design and optimization of network architecture could be further improved for compression towards machine vision. We propose an inverted bottleneck structure for end-to-end compression towards machine vision, which specifically accounts for efficient representation of the semantic information. Moreover, we quest the capability of optimization by incorporating the analytics accuracy into the optimization process, and the optimality is further explored with generalized rate-accuracy optimization in an iterative manner. We use object detection as a showcase for end-to-end compression towards machine vision, and extensive experiments show that the proposed scheme achieves significant BD-rate savings in terms of analysis performance. Moreover, the promise of the scheme is also demonstrated with strong generalization capability towards other machine vision tasks, due to the enabling of signal-level reconstruction.
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural net works have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
Reliable and accurate 3D object detection is a necessity for safe autonomous driving. Although LiDAR sensors can provide accurate 3D point cloud estimates of the environment, they are also prohibitively expensive for many settings. Recently, the intr oduction of pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras. PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs. However, so far these two networks have to be trained separately. In this paper, we introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end. The resulting framework is compatible with most state-of-the-art networks for both tasks and in combination with PointRCNN improves over PL consistently across all benchmarks -- yielding the highest entry on the KITTI image-based 3D object detection leaderboard at the time of submission. Our code will be made available at https://github.com/mileyan/pseudo-LiDAR_e2e.
In this paper, we propose an end-to-end post-filter method with deep attention fusion features for monaural speaker-independent speech separation. At first, a time-frequency domain speech separation method is applied as the pre-separation stage. The aim of pre-separation stage is to separate the mixture preliminarily. Although this stage can separate the mixture, it still contains the residual interference. In order to enhance the pre-separated speech and improve the separation performance further, the end-to-end post-filter (E2EPF) with deep attention fusion features is proposed. The E2EPF can make full use of the prior knowledge of the pre-separated speech, which contributes to speech separation. It is a fully convolutional speech separation network and uses the waveform as the input features. Firstly, the 1-D convolutional layer is utilized to extract the deep representation features for the mixture and pre-separated signals in the time domain. Secondly, to pay more attention to the outputs of the pre-separation stage, an attention module is applied to acquire deep attention fusion features, which are extracted by computing the similarity between the mixture and the pre-separated speech. These deep attention fusion features are conducive to reduce the interference and enhance the pre-separated speech. Finally, these features are sent to the post-filter to estimate each target signals. Experimental results on the WSJ0-2mix dataset show that the proposed method outperforms the state-of-the-art speech separation method. Compared with the pre-separation method, our proposed method can acquire 64.1%, 60.2%, 25.6% and 7.5% relative improvements in scale-invariant source-to-noise ratio (SI-SNR), the signal-to-distortion ratio (SDR), the perceptual evaluation of speech quality (PESQ) and the short-time objective intelligibility (STOI) measures, respectively.
We present an end-to-end image compression system based on compressive sensing. The presented system integrates the conventional scheme of compressive sampling and reconstruction with quantization and entropy coding. The compression performance, in t erms of decoded image quality versus data rate, is shown to be comparable with JPEG and significantly better at the low rate range. We study the parameters that influence the system performance, including (i) the choice of sensing matrix, (ii) the trade-off between quantization and compression ratio, and (iii) the reconstruction algorithms. We propose an effective method to jointly control the quantization step and compression ratio in order to achieve near optimal quality at any given bit rate. Furthermore, our proposed image compression system can be directly used in the compressive sensing camera, e.g. the single pixel camera, to construct a hardware compressive sampling system.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا