ﻻ يوجد ملخص باللغة العربية
The research of visual signal compression has a long history. Fueled by deep learning, exciting progress has been made recently. Despite achieving better compression performance, existing end-to-end compression algorithms are still designed towards better signal quality in terms of rate-distortion optimization. In this paper, we show that the design and optimization of network architecture could be further improved for compression towards machine vision. We propose an inverted bottleneck structure for end-to-end compression towards machine vision, which specifically accounts for efficient representation of the semantic information. Moreover, we quest the capability of optimization by incorporating the analytics accuracy into the optimization process, and the optimality is further explored with generalized rate-accuracy optimization in an iterative manner. We use object detection as a showcase for end-to-end compression towards machine vision, and extensive experiments show that the proposed scheme achieves significant BD-rate savings in terms of analysis performance. Moreover, the promise of the scheme is also demonstrated with strong generalization capability towards other machine vision tasks, due to the enabling of signal-level reconstruction.
We propose an end-to-end trainable network that can simultaneously detect and recognize text of arbitrary shape, making substantial progress on the open problem of reading scene text of irregular shape. We formulate arbitrary shape text detection as
Multi-view stereopsis (MVS) tries to recover the 3D model from 2D images. As the observations become sparser, the significant 3D information loss makes the MVS problem more challenging. Instead of only focusing on densely sampled conditions, we inves
Search space design is very critical to neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit that is much smaller than the ones used in recent NAS algorithms. This searc
Both images and music can convey rich semantics and are widely used to induce specific emotions. Matching images and music with similar emotions might help to make emotion perceptions more vivid and stronger. Existing emotion-based image and music ma
Quick Response (QR) code is one of the most worldwide used two-dimensional codes.~Traditional QR codes appear as random collections of black-and-white modules that lack visual semantics and aesthetic elements, which inspires the recent works to beaut