ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Vilkovisky-DeWitt approach and renormalization group in effective quantum gravity

91   0   0.0 ( 0 )
 نشر من قبل Tib\\'erio De Paula Netto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effective action in quantum general relativity is strongly dependent on the gauge-fixing and parametrization of the quantum metric. As a consequence, in the effective approach to quantum gravity, there is no possibility to introduce the renormalization-group framework in a consistent way. On the other hand, the version of effective action proposed by Vilkovisky and DeWitt does not depend on the gauge-fixing and parametrization off-shell, opening the way to explore the running of the cosmological and Newton constants as well as the coefficients of the higher-derivative terms of the total action. We argue that in the effective framework the one-loop beta functions for the zero-, two- and four-derivative terms can be regarded as exact, that means, free from corrections coming from the higher loops. In this perspective, the running describes the renormalization group flow between the present-day Hubble scale in the IR and the Planck scale in the UV.



قيم البحث

اقرأ أيضاً

The divergent part of the one-loop Vilkovisky unique effective action for quantum Einstein gravity is evaluated in the general parametrization of the quantum field, including the separated conformal factor. The output of this calculation explicitly d emonstrates the parametrization and conformal gauge independence of the unique effective action with the configuration space metric chosen following Vilkoviskys prescription.
Recently, a practical approach to holographic renormalization has been developed based on the Hamilton-Jacobi formulation. Using a simple Einstein-scalar theory, we clarify that this approach does not conflict with the Hamiltonian constraint as it se ems. Then we apply it to the holographic renormalization of massive gravity. We assume that the shift vector is falling off fast enough asymptotically. We derive the counterterms up to the boundary dimension d=4. Interestingly, we find that the conformal anomaly can even occur in odd dimensions, which is different from the Einstein gravity. We check that the counterterms cancel the divergent part of the on-shell action at the background level. At the perturbation level, they are also applicable in several time-dependent cases.
We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the spe cial class of regulator functions that preserves the background field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions.
Perturbation theory is a crucial tool for many physical systems, when exact solutions are not available, or nonperturbative numerical solutions are intractable. Naive perturbation theory often fails on long timescales, leading to secularly growing so lutions. These divergences have been treated with a variety of techniques, including the powerful dynamical renormalization group (DRG). Most of the existing DRG approaches rely on having analytic solutions up to some order in perturbation theory. However, sometimes the equations can only be solved numerically. We reformulate the DRG in the language of differential geometry, which allows us to apply it to numerical solutions of the background and perturbation equations. This formulation also enables us to use the DRG in systems with background parameter flows, and therefore, extend our results to any order in perturbation theory. As an example, we apply this method to calculate the soliton-like solutions of the Korteweg-de Vries equation deformed by adding a small damping term. We numerically construct DRG solutions which are valid on secular time scales, long after naive perturbation theory has broken down.
207 - Shoichi Ichinose 2011
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cut off), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا