ﻻ يوجد ملخص باللغة العربية
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cutoff), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called
We examine the real-time dynamics of a system of one or more black holes interacting with long wavelength gravitational fields. We find that the (classical) renormalizability of the effective field theory that describes this system necessitates the i
The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilso
The effective action in quantum general relativity is strongly dependent on the gauge-fixing and parametrization of the quantum metric. As a consequence, in the effective approach to quantum gravity, there is no possibility to introduce the renormali
An unexpected explanation for neutrino mass, Dark Matter (DM) and Dark Energy (DE) from genuine Quantum Chromodynamics (QCD) of the Standard Model (SM) is proposed here, while the strong CP problem is resolved without any need to account for fundamen