ﻻ يوجد ملخص باللغة العربية
As a modified gravity theory that introduces new gravitational degrees of freedom, the generalized SU(2) Proca theory (GSU2P for short) is the non-Abelian version of the well-known generalized Proca theory where the action is invariant under global transformations of the SU(2) group. This theory was formulated for the first time in Phys. Rev. D 94 (2016) 084041, having implemented the required primary constraint-enforcing relation to make the Lagrangian degenerate and remove one degree of freedom from the vector field in accordance with the irreducible representations of the Poincare group. It was later shown in Phys. Rev. D 101 (2020) 045008, ibid 045009, that a secondary constraint-enforcing relation, which trivializes for the generalized Proca theory but not for the SU(2) version, was needed to close the constraint algebra. It is the purpose of this paper to implement this secondary constraint-enforcing relation in GSU2P and to make the construction of the theory more transparent. Since several terms in the Lagrangian were dismissed in Phys. Rev. D 94 (2016) 084041 via their equivalence to other terms through total derivatives, not all of the latter satisfying the secondary constraint-enforcing relation, the work was not so simple as directly applying this relation to the resultant Lagrangian pieces of the old theory. Thus, we were motivated to reconstruct the theory from scratch. In the process, we found the beyond GSU2P.
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This
Under the same spirit of the Galileon-Horndeski theories and their more modern extensions, the generalized SU(2) Proca theory was built by demanding that its action may be free of the Ostrogradskis instability. Nevertheless, the theory must also be f
To date, different alternative theories of gravity, although related, involving Proca fields have been proposed. Unfortunately, the procedure to obtain the relevant terms in some formulations has not been systematic enough or exhaustive, thus resulti
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom
The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this e