ﻻ يوجد ملخص باللغة العربية
Under the same spirit of the Galileon-Horndeski theories and their more modern extensions, the generalized SU(2) Proca theory was built by demanding that its action may be free of the Ostrogradskis instability. Nevertheless, the theory must also be free of other instability problems in order to ensure its viability. As a first approach to address this issue, we concentrate on a quite general variant of the theory and investigate the general conditions for the absence of ghost and gradient instabilities in the tensor sector without the need for resolving the dynamical background. The phenomenological interest of this approach as well as of the variant investigated lies on the possibility of building cosmological models driven solely by non-Abelian vector fields that may account for a successful description of both the early inflation and the late-time accelerated expansion of the universe.
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This
As a modified gravity theory that introduces new gravitational degrees of freedom, the generalized SU(2) Proca theory (GSU2P for short) is the non-Abelian version of the well-known generalized Proca theory where the action is invariant under global t
The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this e
The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling
We derive the profile of a vector field coupled to matter on a static and spherically symmetric background in the context of generalized Proca theories. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component d