ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave propagation and energy dissipation of collagen molecules

76   0   0.0 ( 0 )
 نشر من قبل Mario Milazzo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collagen is the key protein of connective tissue (i.e., skin, tendons and ligaments, cartilage, among others) accounting for 25% to 35% of the whole-body protein content, and entitled of conferring mechanical stability. This protein is also a fundamental building block of bone due to its excellent mechanical properties together with carbonated hydroxyapatite minerals. While the mechanical resilience and viscoelasticity have been studied both in vitro and in vivo from the molecule to tissue level, wave propagation properties and energy dissipation have not yet been deeply explored, in spite of being crucial to understand the vibration dynamics of collagenous structures (e.g., eardrum, cochlear membranes) upon impulsive loads. By using a bottom-up atomistic modelling approach, here we study a collagen peptide under two distinct impulsive displacement loads, including longitudinal and transversal inputs. Using a one-dimensional string model as a model system, we investigate the roles of hydration and load direction on wave propagation along the collagen peptide and the related energy dissipation. We find that wave transmission and energy-dissipation strongly depend on the loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as tendon and eardrum. This study can step towards understanding the mechanical behaviour of collagen upon transient loads, impact loading and fatigue, and designing biomimetic and bio-inspired materials to replace specific native tissues such as the tympanic membrane.



قيم البحث

اقرأ أيضاً

An intelligent radome utilizing composite metamaterial structures is presented and investigated in this article, which can realize energy isolation and asymmetric propagation of electromagnetic (EM) wave self-adaptively by controlling states of PIN d iodes. The whole structure mainly consists of a broadband polarization-sensitive polarization converter (PC) and an active frequency selective rasorber (AFSR) switching between a transmission mode and absorption mode which is used as an energy-selective surface (ESS). Among them, the function of the PC is to make the EM waves transmit asymmetrically, and the purpose of AFSR is to make the high-power waves be reflected or absorbed, which depends on the polarization type of the wave. Thus, the radome can realize both asymmetric propagations of EM wave and electromagnetic shielding. The equivalent circuit models (ECM) and parametric studies are considered to explain the physical operating mechanism of PC and AFSR. The fabricated structure with 7*7 unit cells is experimentally demonstrated and the measured results agree with simulated results well. Considering the distinctive characteristic of self-actuation, the presented concept has the potential application in electromagnetic stealth and HPEMWs shielding to protect communication devices.
Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales highlighting material features across hier archical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that Nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (i.e., overlap and gap) of the D-period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young s moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger dampening effect upon faster inputs compatible to the bone behavior at the macroscale. Our results improve the understanding of mineralized collagen composites unveiling the energy dissipative behavior of such materials. This impacts, besides the physiology, the design and characterization of new bioinspired composites for replacement devices (e.g., prostheses for sound transmission or conduction) and for optimized structures able to bear transient loads, e.g., impact, fatigue, in structural applications.
We investigate the propagation of Rayleigh waves in a half-space coupled to a nonlinear metasurface. The metasurface consists of an array of nonlinear oscillators attached to the free surface of a homogeneous substrate. We describe, analytically and numerically, the effects of nonlinear interaction force and energy loss on the dispersion of Rayleigh waves. We develop closed-form expressions to predict the dispersive characteristics of nonlinear Rayleigh waves by adopting a leading-order effective medium description. In particular, we demonstrate how hardening nonlinearity reduces and eventually eliminates the linear filtering bandwidth of the metasurface. Softening nonlinearity, in contrast, induces lower and broader spectral gaps for weak to moderate strengths of nonlinearity, and narrows and eventually closes the gaps at high strengths of nonlinearity. We also observe the emergence of a spatial gap (in wavenumber) in the in-phase branch of the dispersion curves for softening nonlinearity. Finally, we investigate the interplay between nonlinearity and energy loss and discuss their combined effects on the dispersive properties of the metasurface. Our analytical results, supported by finite element simulations, demonstrate the mechanisms for achieving tunable dispersion characteristics in nonlinear metasurfaces.
The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered p rocessors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS$_2$ transistors. Using Raman thermometry we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance (TBC) of the MoS$_2$ interface (14 $pm$ 4 MWm$^-$$^2$K$^-$$^1$) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into non-uniformities of the MoS$_2$ transistors (small bilayer regions), which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.
The ultra-wide bandgap of diamond distinguishes it from other semiconductors, in that all known defects have deep energy levels that are inactive at room temperature. Here, we present the effect of deep defects on the mechanical energy dissipation of single-crystal diamond experimentally and theoretically up to 973 K. Energy dissipation is found to increase with temperature and exhibits local maxima due to the interaction between phonons and deep defects activated at specific temperatures. A two-level model with deep energies is proposed to well explain the energy dissipation at elevated temperatures. It is evident that the removal of boron impurities can substantially increase the quality factor of room-temperature diamond mechanical resonators. The deep-energy nature of nitrogen bestows single-crystal diamond with outstanding low-intrinsic energy dissipation in mechanical resonators at room temperature or above.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا