ﻻ يوجد ملخص باللغة العربية
A convex geometry is a closure system satisfying the anti-exchange property. In this work we document all convex geometries on 4- and 5-element base sets with respect to their representation by circles on the plane. All 34 non-isomorphic geometries on a 4-element set can be represented by circles, and of the 672 geometries on a 5-element set, we made representations of 621. Of the 51 remaining geometries on a 5-element set, one was already shown not to be representable due to the Weak Carousel property, as articulated by Adaricheva and Bolat (Discrete Mathematics, 2019). In this paper we show that 7 more of these convex geometries cannot be represented by circles on the plane, due to what we term the Triangle Property.
We study a game where two players take turns selecting points of a convex geometry until the convex closure of the jointly selected points contains all the points of a given winning set. The winner of the game is the last player able to move. We deve
Convex geometries (Edelman and Jamison, 1985) are finite combinatorial structures dual to union-closed antimatroids or learning spaces. We define an operation of resolution for convex geometries, which replaces each element of a base convex geometry
The convex grabbing game is a game where two players, Alice and Bob, alternate taking extremal points from the convex hull of a point set on the plane. Rational weights are given to the points. The goal of each player is to maximize the total weight
Convex geometry is a closure space $(G,phi)$ with the anti-exchange property. A classical result of Edelman and Jamison (1985) claims that every finite convex geometry is a join of several linear sub-geometries, and the smallest number of such sub-ge
We prove that every finite family of convex sets in the plane satisfying the $(4,3)$-property can be pierced by $9$ points. This improves the bound of $13$ proved by Gyarfas, Kleitman, and Toth in 2001.