ﻻ يوجد ملخص باللغة العربية
Convex geometries (Edelman and Jamison, 1985) are finite combinatorial structures dual to union-closed antimatroids or learning spaces. We define an operation of resolution for convex geometries, which replaces each element of a base convex geometry by a fiber convex geometry. Contrary to what happens for similar constructions -- compounds of hypergraphs, as in Chein, Habib and Maurer (1981), and compositions of set systems, as in Mohring and Radermacher (1984) -- , resolutions of convex geometries always yield a convex geometry. We investigate resolutions of special convex geometries: ordinal and affine. A resolution of ordinal convex geometries is again ordinal, but a resolution of affine convex geometries may fail to be affine. A notion of primitivity, which generalize the corresponding notion for posets, arises from resolutions: a convex geometry is primitive if it is not a resolution of smaller ones. We obtain a characterization of affine convex geometries that are primitive, and compute the number of primitive convex geometries on at most four elements. Several open problems are listed.
We study a game where two players take turns selecting points of a convex geometry until the convex closure of the jointly selected points contains all the points of a given winning set. The winner of the game is the last player able to move. We deve
Convex geometry is a closure space $(G,phi)$ with the anti-exchange property. A classical result of Edelman and Jamison (1985) claims that every finite convex geometry is a join of several linear sub-geometries, and the smallest number of such sub-ge
A convex geometry is a closure system satisfying the anti-exchange property. In this work we document all convex geometries on 4- and 5-element base sets with respect to their representation by circles on the plane. All 34 non-isomorphic geometries o
The Laplacian matrix of a graph G describes the combinatorial dynamics of the Abelian Sandpile Model and the more general Riemann-Roch theory of G. The lattice ideal associated to the lattice generated by the columns of the Laplacian provides an alge
We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Z_k of order k. We then demonstrate how such a chain map induces a Z_k-combinatorial Stokes theorem, which in turn implies Dolds theo