ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolutions of Convex Geometries

192   0   0.0 ( 0 )
 نشر من قبل Jean-Paul Doignon
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Convex geometries (Edelman and Jamison, 1985) are finite combinatorial structures dual to union-closed antimatroids or learning spaces. We define an operation of resolution for convex geometries, which replaces each element of a base convex geometry by a fiber convex geometry. Contrary to what happens for similar constructions -- compounds of hypergraphs, as in Chein, Habib and Maurer (1981), and compositions of set systems, as in Mohring and Radermacher (1984) -- , resolutions of convex geometries always yield a convex geometry. We investigate resolutions of special convex geometries: ordinal and affine. A resolution of ordinal convex geometries is again ordinal, but a resolution of affine convex geometries may fail to be affine. A notion of primitivity, which generalize the corresponding notion for posets, arises from resolutions: a convex geometry is primitive if it is not a resolution of smaller ones. We obtain a characterization of affine convex geometries that are primitive, and compute the number of primitive convex geometries on at most four elements. Several open problems are listed.



قيم البحث

اقرأ أيضاً

We study a game where two players take turns selecting points of a convex geometry until the convex closure of the jointly selected points contains all the points of a given winning set. The winner of the game is the last player able to move. We deve lop a structure theory for these games and use it to determine the nim number for several classes of convex geometries, including one-dimensional affine geometries, vertex geometries of trees, and games with a winning set consisting of extreme points.
Convex geometry is a closure space $(G,phi)$ with the anti-exchange property. A classical result of Edelman and Jamison (1985) claims that every finite convex geometry is a join of several linear sub-geometries, and the smallest number of such sub-ge ometries necessary for representation is called the convex dimension. In our work we find necessary and sufficient conditions on a closure operator $phi$ of convex geometry $(G,phi)$ so that its convex dimension equals 2, equivalently, they are represented by segments on a line. These conditions can be checked in polynomial time in two parameters: the size of the base set $|G|$ and the size of the implicational basis of $(G,phi)$.
A convex geometry is a closure system satisfying the anti-exchange property. In this work we document all convex geometries on 4- and 5-element base sets with respect to their representation by circles on the plane. All 34 non-isomorphic geometries o n a 4-element set can be represented by circles, and of the 672 geometries on a 5-element set, we made representations of 621. Of the 51 remaining geometries on a 5-element set, one was already shown not to be representable due to the Weak Carousel property, as articulated by Adaricheva and Bolat (Discrete Mathematics, 2019). In this paper we show that 7 more of these convex geometries cannot be represented by circles on the plane, due to what we term the Triangle Property.
The Laplacian matrix of a graph G describes the combinatorial dynamics of the Abelian Sandpile Model and the more general Riemann-Roch theory of G. The lattice ideal associated to the lattice generated by the columns of the Laplacian provides an alge braic perspective on this recently (re)emerging field. This ideal I_G has a distinguished monomial initial ideal M_G, characterized by the property that the standard monomials are in bijection with the G-parking functions of the graph G. The ideal M_G was also introduced by Postnikov and Shapiro (2004) in the context of monotone monomial ideals. We study resolutions of M_G and show that a minimal free cellular resolution is supported on the bounded subcomplex of a section of the graphical arrangement of G. This generalizes constructions from Postnikov and Shapiro (for the case of the complete graph) and connects to work of Manjunath and Sturmfels, and of Perkinson et al. on the commutative algebra of Sandpiles. As a corollary we verify a conjecture of Perkinson et al. regarding the Betti numbers of M_G, and in the process provide a combinatorial characterization in terms of acyclic orientations.
We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Z_k of order k. We then demonstrate how such a chain map induces a Z_k-combinatorial Stokes theorem, which in turn implies Dolds theo rem that there is no equivariant map from an n-connected to an n-dimensional free Z_k-complex. Thus we build a combinatorial access road to problems in combinatorics and discrete geometry that have previously been treated with methods from equivariant topology. The special case k=2 for this is classical; it involves Tuckers (1949) combinatorial lemma which implies the Borsuk-Ulam theorem, its proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula of Fan (1967), and Meuniers work (2006).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا