ﻻ يوجد ملخص باللغة العربية
In this paper, we develop asymptotic theories for a class of latent variable models for large-scale multi-relational networks. In particular, we establish consistency results and asymptotic error bounds for the (penalized) maximum likelihood estimators when the size of the network tends to infinity. The basic technique is to develop a non-asymptotic error bound for the maximum likelihood estimators through large deviations analysis of random fields. We also show that these estimators are nearly optimal in terms of minimax risk.
We study the statistical properties of stochastic evolution equations driven by space-only noise, either additive or multiplicative. While forward problems, such as existence, uniqueness, and regularity of the solution, for such equations have been s
This work presents a statistical analysis of a class of jointly optimized beamformer-assisted acoustic echo cancelers (AEC) with the beamformer (BF) implemented in the Generalized Sidelobe Canceler (GSC) form and using the least-mean square (LMS) alg
Many, if not most network analysis algorithms have been designed specifically for single-relational networks; that is, networks in which all edges are of the same type. For example, edges may either represent friendship, kinship, or collaboration, bu
There are various approaches to the problem of how one is supposed to conduct a statistical analysis. Different analyses can lead to contradictory conclusions in some problems so this is not a satisfactory state of affairs. It seems that all approach
We study the problem of exact support recovery based on noisy observations and present Refined Least Squares (RLS). Given a set of noisy measurement $$ myvec{y} = myvec{X}myvec{theta}^* + myvec{omega},$$ and $myvec{X} in mathbb{R}^{N times D}$ which