ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Analysis of a GSC-based Jointly Optimized Beamformer-Assisted Acoustic Echo Canceler

153   0   0.0 ( 0 )
 نشر من قبل Marcos Maruo
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a statistical analysis of a class of jointly optimized beamformer-assisted acoustic echo cancelers (AEC) with the beamformer (BF) implemented in the Generalized Sidelobe Canceler (GSC) form and using the least-mean square (LMS) algorithm. The analysis considers the possibility of independent convergence control for the BF and the AEC. The resulting models permit the study of system performance under typical handling of double-talk and channel changes. We show that the joint optimization of the BF-AEC is equivalent to a linearly-constrained minimum variance problem. Hence, the derived analytical model can be used to predict the transient performance of general adaptive wideband beamformers. We study the transient and steady-state behaviors of the residual mean echo power for stationary Gaussian inputs. A convergence analysis leads to stability bounds for the step-size matrix and design guidelines are derived from the analytical models. Monte Carlo simulations illustrate the accuracy of the theoretical models and the applicability of the proposed design guidelines. Examples include operation under mild degrees of nonstationarity. Finally, we show how a high convergence rate can be achieved using a quasi-Newton adaptation scheme in which the step-size matrix is designed to whiten the combined input vector.



قيم البحث

اقرأ أيضاً

In this paper, we develop asymptotic theories for a class of latent variable models for large-scale multi-relational networks. In particular, we establish consistency results and asymptotic error bounds for the (penalized) maximum likelihood estimato rs when the size of the network tends to infinity. The basic technique is to develop a non-asymptotic error bound for the maximum likelihood estimators through large deviations analysis of random fields. We also show that these estimators are nearly optimal in terms of minimax risk.
The features of a logically sound approach to a theory of statistical reasoning are discussed. A particular approach that satisfies these criteria is reviewed. This is seen to involve selection of a model, model checking, elicitation of a prior, chec king the prior for bias, checking for prior-data conflict and estimation and hypothesis assessment inferences based on a measure of evidence. A long-standing anomalous example is resolved by this approach to inference and an application is made to a practical problem of considerable importance which, among other novel aspects of the analysis, involves the development of a relevant elicitation algorithm.
We study the statistical properties of stochastic evolution equations driven by space-only noise, either additive or multiplicative. While forward problems, such as existence, uniqueness, and regularity of the solution, for such equations have been s tudied, little is known about inverse problems for these equations. We exploit the somewhat unusual structure of the observations coming from these equations that leads to an interesting interplay between classical and non-traditional statistical models. We derive several types of estimators for the drift and/or diffusion coefficients of these equations, and prove their relevant properties.
117 - Michael Evans 2019
There are various approaches to the problem of how one is supposed to conduct a statistical analysis. Different analyses can lead to contradictory conclusions in some problems so this is not a satisfactory state of affairs. It seems that all approach es make reference to the evidence in the data concerning questions of interest as a justification for the methodology employed. It is fair to say, however, that none of the most commonly used methodologies is absolutely explicit about how statistical evidence is to be characterized and measured. We will discuss the general problem of statistical reasoning and the development of a theory for this that is based on being precise about statistical evidence. This will be shown to lead to the resolution of a number of problems.
123 - Xi He , Liyan Xie , Yao Xie 2021
We study the variable selection problem in survival analysis to identify the most important factors affecting the survival time when the variables have prior knowledge that they have a mutual correlation through a graph structure. We consider the Cox proportional hazard model with a graph-based regularizer for variable selection. A computationally efficient algorithm is developed to solve the graph regularized maximum likelihood problem by connecting to group lasso. We provide theoretical guarantees about the recovery error and asymptotic distribution of the proposed estimators. The good performance and benefit of the proposed approach compared with existing methods are demonstrated in both synthetic and real data examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا