ﻻ يوجد ملخص باللغة العربية
For non-Hermitian quantum models, the dynamics is apparently not reflected by the static properties, e.g., the complex energy spectrum, because of the nonorthogonality of the right eigenvectors, the nonunitarity of the time evolution, the breakdown of the adiabatic theory, etc., but in experiments the time evolution of an initial state is commonly used. Here, we pay attention to the dynamics of an initial end state in nonreciprocal Su-Schrieffer-Heeger models under open boundary conditions, and we find that it is dynamically more robust than its Hermitian counterpart, because the non-Hermitian skin effect can suppress the part leaking to the bulk sites. To observe this, we propose a classical electric circuit with only a few passive inductors and capacitors, the mapping of which to the quantum model is established. This work explains how the non-Hermitian skin effect enhances the robustness of the topological end state, and it offers an easy way, via the classical electric circuit, of studying the nonreciprocal quantum dynamics, which may stimulate more dynamical studies of non-Hermitian models in other platforms.
We propose a realization of topological quantum interference in a pumped non-Hermitian Su-Schrieffer-Heeger lattice that can be implemented by creation and coherent control of excitonic states of trapped neutral atoms. Our approach is based on realiz
We demonstrate a platform for synthetic dimensions based on coupled Rydberg levels in ultracold atoms, and we implement the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian. Rydberg levels are interpreted as synthetic lattice sites, with tunnel
We investigate dissipative extensions of the Su-Schrieffer-Heeger model with regard to different approaches of modeling dissipation. In doing so, we use two distinct frameworks to describe the gain and loss of particles, one uses Lindblad operators w
We investigate the Su-Schrieffer-Heeger model in presence of an injection and removal of particles, introduced via a master equation in Lindblad form. It is shown that the dynamics of the density matrix follows the predictions of calculations in whic
In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of t