ﻻ يوجد ملخص باللغة العربية
We investigate dissipative extensions of the Su-Schrieffer-Heeger model with regard to different approaches of modeling dissipation. In doing so, we use two distinct frameworks to describe the gain and loss of particles, one uses Lindblad operators within the scope of Lindblad master equations, the other uses complex potentials as an effective description of dissipation. The reservoirs are chosen in such a way that the non-Hermitian complex potentials are $mathcal{PT}$-symmetric. From the effective theory we extract a state which has similar properties as the non-equilibrium steady state following from Lindblad master equations with respect to lattice site occupation. We find considerable similarities in the spectra of the effective Hamiltonian and the corresponding Liouvillean. Further, we generalize the concept of the Zak phase to the dissipative scenario in terms of the Lindblad description and relate it to the topological phases of the underlying Hermitian Hamiltonian.
We address the conditions required for a $mathbb{Z}$ topological classification in the most general form of the non-Hermitian Su-Schrieffer-Heeger (SSH) model. Any chirally-symmetric SSH model will possess a conjugated-pseudo-Hermiticity which we sho
The Su-Schrieffer-Heeger (SSH) model perhaps is the easiest and the most basic model for topological excitations. Many variations and extensions of the SSH model have been proposed and explored to better understand both fundamental and novel aspects
Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect o
We propose an implementation of a generalized Su-Schrieffer-Heeger (SSH) model based on optomechanical arrays. The topological properties of the generalized SSH model depend on the effective optomechanical interactions enhanced by strong driving opti
In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of t