ﻻ يوجد ملخص باللغة العربية
Autonomous agents acting in the real-world often operate based on models that ignore certain aspects of the environment. The incompleteness of any given model---handcrafted or machine acquired---is inevitable due to practical limitations of any modeling technique for complex real-world settings. Due to the limited fidelity of its model, an agents actions may have unexpected, undesirable consequences during execution. Learning to recognize and avoid such negative side effects of the agents actions is critical to improving the safety and reliability of autonomous systems. This emerging research topic is attracting increased attention due to the increased deployment of AI systems and their broad societal impacts. This article provides a comprehensive overview of different forms of negative side effects and the recent research efforts to address them. We identify key characteristics of negative side effects, highlight the challenges in avoiding negative side effects, and discuss recently developed approaches, contrasting their benefits and limitations. We conclude with a discussion of open questions and suggestions for future research directions.
AI researchers employ not only the scientific method, but also methodology from mathematics and engineering. However, the use of the scientific method - specifically hypothesis testing - in AI is typically conducted in service of engineering objectiv
Designing reward functions is difficult: the designer has to specify what to do (what it means to complete the task) as well as what not to do (side effects that should be avoided while completing the task). To alleviate the burden on the reward desi
Designing reward functions for reinforcement learning is difficult: besides specifying which behavior is rewarded for a task, the reward also has to discourage undesired outcomes. Misspecified reward functions can lead to unintended negative side eff
Several pieces of work have uncovered performance disparities by conducting disaggregated evaluations of AI systems. We build on these efforts by focusing on the choices that must be made when designing a disaggregated evaluation, as well as some of
In a world increasingly dominated by AI applications, an understudied aspect is the carbon and social footprint of these power-hungry algorithms that require copious computation and a trove of data for training and prediction. While profitable in the