ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoiding Side Effects By Considering Future Tasks

208   0   0.0 ( 0 )
 نشر من قبل Victoria Krakovna
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing reward functions is difficult: the designer has to specify what to do (what it means to complete the task) as well as what not to do (side effects that should be avoided while completing the task). To alleviate the burden on the reward designer, we propose an algorithm to automatically generate an auxiliary reward function that penalizes side effects. This auxiliary objective rewards the ability to complete possible future tasks, which decreases if the agent causes side effects during the current task. The future task reward can also give the agent an incentive to interfere with events in the environment that make future tasks less achievable, such as irreversible actions by other agents. To avoid this interference incentive, we introduce a baseline policy that represents a default course of action (such as doing nothing), and use it to filter out future tasks that are not achievable by default. We formally define interference incentives and show that the future task approach with a baseline policy avoids these incentives in the deterministic case. Using gridworld environments that test for side effects and interference, we show that our method avoids interference and is more effective for avoiding side effects than the common approach of penalizing irreversible actions.



قيم البحث

اقرأ أيضاً

Autonomous agents acting in the real-world often operate based on models that ignore certain aspects of the environment. The incompleteness of any given model---handcrafted or machine acquired---is inevitable due to practical limitations of any model ing technique for complex real-world settings. Due to the limited fidelity of its model, an agents actions may have unexpected, undesirable consequences during execution. Learning to recognize and avoid such negative side effects of the agents actions is critical to improving the safety and reliability of autonomous systems. This emerging research topic is attracting increased attention due to the increased deployment of AI systems and their broad societal impacts. This article provides a comprehensive overview of different forms of negative side effects and the recent research efforts to address them. We identify key characteristics of negative side effects, highlight the challenges in avoiding negative side effects, and discuss recently developed approaches, contrasting their benefits and limitations. We conclude with a discussion of open questions and suggestions for future research directions.
Designing reward functions for reinforcement learning is difficult: besides specifying which behavior is rewarded for a task, the reward also has to discourage undesired outcomes. Misspecified reward functions can lead to unintended negative side eff ects, and overall unsafe behavior. To overcome this problem, recent work proposed to augment the specified reward function with an impact regularizer that discourages behavior that has a big impact on the environment. Although initial results with impact regularizers seem promising in mitigating some types of side effects, important challenges remain. In this paper, we examine the main current challenges of impact regularizers and relate them to fundamental design decisions. We discuss in detail which challenges recent approaches address and which remain unsolved. Finally, we explore promising directions to overcome the unsolved challenges in preventing negative side effects with impact regularizers.
We present an approach to sensorimotor control in immersive environments. Our approach utilizes a high-dimensional sensory stream and a lower-dimensional measurement stream. The cotemporal structure of these streams provides a rich supervisory signal , which enables training a sensorimotor control model by interacting with the environment. The model is trained using supervised learning techniques, but without extraneous supervision. It learns to act based on raw sensory input from a complex three-dimensional environment. The presented formulation enables learning without a fixed goal at training time, and pursuing dynamically changing goals at test time. We conduct extensive experiments in three-dimensional simulations based on the classical first-person game Doom. The results demonstrate that the presented approach outperforms sophisticated prior formulations, particularly on challenging tasks. The results also show that trained models successfully generalize across environments and goals. A model trained using the presented approach won the Full Deathmatch track of the Visual Doom AI Competition, which was held in previously unseen environments.
How can we design agents that pursue a given objective when all feedback mechanisms are influenceable by the agent? Standard RL algorithms assume a secure reward function, and can thus perform poorly in settings where agents can tamper with the rewar d-generating mechanism. We present a principled solution to the problem of learning from influenceable feedback, which combines approval with a decoupled feedback collection procedure. For a natural class of corruption functions, decoupled approval algorithms have aligned incentives both at convergence and for their local updates. Empirically, they also scale to complex 3D environments where tampering is possible.
An important goal of neural architecture search (NAS) is to automate-away the design of neural networks on new tasks in under-explored domains. Motivated by this broader vision for NAS, we study the problem of enabling users to discover the right neu ral operations given data from their specific domain. We introduce a search space of neural operations called XD-Operations that mimic the inductive bias of standard multichannel convolutions while being much more expressive: we prove that XD-operations include many named operations across several application areas. Starting with any standard backbone network such as LeNet or ResNet, we show how to transform it into an architecture search space over XD-operations and how to traverse the space using a simple weight-sharing scheme. On a diverse set of applications--image classification, solving partial differential equations (PDEs), and sequence modeling--our approach consistently yields models with lower error than baseline networks and sometimes even lower error than expert-designed domain-specific approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا