ﻻ يوجد ملخص باللغة العربية
We investigate the traveling wave solutions of a three-species system involving a single predator and a pair of strong-weak competing preys. Our results show how the predation may affect this dynamics. More precisely, we describe several situations where the environment is initially inhabited by the predator and by either one of the two preys. When the weak competing prey is an aboriginal species, we show that there exist traveling waves where the strong prey invades the environment and either replaces its weak counterpart, or more surprisingly the three species eventually co-exist. Furthermore, depending on the parameters, we can also construct traveling waves where the weaker prey actually invades the environment initially inhabited by its strong competitor and the predator. Finally, our results on the existence of traveling waves are sharp, in the sense that we find the minimal wave speed in all those situations.
We are concerned with the persistence of both predator and prey in a diffusive predator-prey system with a climate change effect, which is modeled by a spatial-temporal heterogeneity depending on a moving variable. Moreover, we consider both the case
This manuscript considers a Neumann initial-boundary value problem for the predator-prey system $$ left{ begin{array}{l} u_t = D_1 u_{xx} - chi_1 (uv_x)_x + u(lambda_1-u+a_1 v), [1mm] v_t = D_2 v_{xx} + chi_2 (vu_x)_x + v(lambda_2-v-a_2 u), e
We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the $big(frac{G}{G
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterize
In this manuscript, we consider temporal and spatio-temporal modified Holling-Tanner predator-prey models with predator-prey growth rate as a logistic type, Holling type II functional response and alternative food sources for the predator. From our r