ﻻ يوجد ملخص باللغة العربية
This manuscript considers a Neumann initial-boundary value problem for the predator-prey system $$ left{ begin{array}{l} u_t = D_1 u_{xx} - chi_1 (uv_x)_x + u(lambda_1-u+a_1 v), [1mm] v_t = D_2 v_{xx} + chi_2 (vu_x)_x + v(lambda_2-v-a_2 u), end{array} right. qquad qquad (star) $$ in an open bounded interval $Omega$ as the spatial domain, where for $iin{1,2}$ the parameters $D_i, a_i, lambda_i$ and $chi_i$ are positive. Due to the simultaneous appearance of two mutually interacting taxis-type cross-diffusive mechanisms, one of which even being attractive, it seems unclear how far a solution theory can be built upon classical results on parabolic evolution problems. In order to nevertheless create an analytical setup capable of providing global existence results as well as detailed information on qualitative behavior, this work pursues a strategy via parabolic regularization, in the course of which ($star$) is approximated by means of certain fourth-order problems involving degenerate diffusion operators of thin film type. During the design thereof, a major challenge is related to the ambition to retain consistency with some fundamental entropy-like structures formally associated with ($star$); in particular, this will motivate the construction of an approximation scheme including two free parameters which will finally be fixed in different ways, depending on the size of $lambda_2$ relative to $a_2 lambda_1$.
We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the $big(frac{G}{G
We investigate the traveling wave solutions of a three-species system involving a single predator and a pair of strong-weak competing preys. Our results show how the predation may affect this dynamics. More precisely, we describe several situations w
In this manuscript, we consider temporal and spatio-temporal modified Holling-Tanner predator-prey models with predator-prey growth rate as a logistic type, Holling type II functional response and alternative food sources for the predator. From our r
We are concerned with the persistence of both predator and prey in a diffusive predator-prey system with a climate change effect, which is modeled by a spatial-temporal heterogeneity depending on a moving variable. Moreover, we consider both the case
We consider the properties of a slow-fast prey-predator system in time and space. We first argue that the simplicity of prey-predator system is apparent rather than real and there are still many of its hidden properties that have been poorly studied