ترغب بنشر مسار تعليمي؟ اضغط هنا

Renyi Entropy of Interacting Thermal Bosons in Large $N$ Approximation

86   0   0.0 ( 0 )
 نشر من قبل Ahana Chakraborty
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a Wigner function based approach, we study the Renyi entropy of a subsystem $A$ of a system of Bosons interacting with a local repulsive potential. The full system is assumed to be in thermal equilibrium at a temperature $T$ and density $rho$. For a ${cal U}(N)$ symmetric model, we show that the Renyi entropy of the system in the large $N$ limit can be understood in terms of an effective non-interacting system with a spatially varying mean field potential, which has to be determined self consistently. The Renyi entropy is the sum of two terms: (a) Renyi entropy of this effective system and (b) the difference in thermal free energy between the effective system and the original translation invariant system, scaled by $T$. We determine the self consistent equation for this effective potential within a saddle point approximation. We use this formalism to look at one and two dimensional Bose gases on a lattice. In both cases, the potential profile is that of a square well, taking one value in the subsystem $A$ and a different value outside it. The potential varies in space near the boundary of the subsystem $A$ on the scale of density-density correlation length. The effect of interaction on the entanglement entropy density is determined by the ratio of the potential barrier to the temperature and peaks at an intermediate temperature, while the high and low temperature regimes are dominated by the non-interacting answer.



قيم البحث

اقرأ أيضاً

We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functio ns, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperature s. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of non-interacting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semi-classical picture of quasi-particles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of non-interacting fermions and bosons are discussed.
The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this letter, we show that it supersedes the w idely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying nonlinear sound waves emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-ABACUS algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.
We generalize techniques previously used to compute ground-state properties of one-dimensional noninteracting quantum gases to obtain exact results at finite temperature. We compute the order-n Renyi entanglement entropy to all orders in the fugacity in one, two, and three spatial dimensions. In all spatial dimensions, we provide closed-form expressions for its virial expansion up to next-to-leading order. In all of our results, we find explicit volume scaling in the high-temperature limit.
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for th e strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value $g^{(2)}(0)approx 2 p/(nvarepsilon)$ in the quantum critical regime, the TLL phase and the quasi-classical region, where $p$ is the pressure per unit length rescaled by the interaction energy $varepsilon=frac{hbar^2}{2m} c^2$ with interaction strength $c$ and linear density $n$. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا