ﻻ يوجد ملخص باللغة العربية
We generalize techniques previously used to compute ground-state properties of one-dimensional noninteracting quantum gases to obtain exact results at finite temperature. We compute the order-n Renyi entanglement entropy to all orders in the fugacity in one, two, and three spatial dimensions. In all spatial dimensions, we provide closed-form expressions for its virial expansion up to next-to-leading order. In all of our results, we find explicit volume scaling in the high-temperature limit.
We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functio
We formulate a new ``Wigner characteristics based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating R{e}nyi entropies
We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point w
In a quantum many-body system that possesses an additive conserved quantity, the entanglement entropy of a subsystem can be resolved into a sum of contributions from different sectors of the subsystems reduced density matrix, each sector correspondin
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete