ترغب بنشر مسار تعليمي؟ اضغط هنا

Relationship between Radar Cross Section and Optical Magnitude based on Radar and Optical Simultaneous Observations of Faint Meteors

116   0   0.0 ( 0 )
 نشر من قبل Ryou Ohsawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radar and optical simultaneous observations of meteors are important to understand the size distribution of the interplanetary dust. However, faint meteors detected by high power large aperture radar observations, which are typically as faint as 10 mag. in optical, have not been detected until recently in optical observations, mainly due to insufficient sensitivity of the optical observations. In this paper, two radar and optical simultaneous observations were organized. The first observation was carried out in 2009 to 2010 using Middle and Upper Atmosphere Radar (MU radar) and an image-intensified CCD camera. The second observation was carried out in 2018 using the MU radar and a mosaic CMOS camera, Tomo-e Gozen, mounted on the 1.05-m Kiso Schmidt Telescope. In total, 331 simultaneous meteors were detected. The relationship between radar cross sections and optical V-band magnitudes was well approximated by a linear function. A transformation function from the radar cross section to the V-band magnitude was derived for sporadic meteors. The transformation function was applied to about 150,000 meteors detected by the MU radar in 2009--2015, large part of which are sporadic, and a luminosity function was derived in the magnitude range of $-1.5$ to $9.5$ mag. The luminosity function was well approximated by a single power-law function with the population index of $r = 3.52{pm}0.12$. The present observation indicates that the MU radar has capability to detect interplanetary dust of $10^{-5}$ to $10^{0}$ g in mass as meteors.



قيم البحث

اقرأ أيضاً

The YORP effect is a small thermal-radiation torque experienced by small asteroids, and is considered to be crucial in their physical and dynamical evolution. It is important to understand this effect by providing measurements of YORP for a range of asteroid types to facilitate the development of a theoretical framework. We are conducting a long-term observational study on a selection of near-Earth asteroids to support this. We focus here on (68346) 2001 KZ66, for which we obtained both optical and radar observations spanning a decade. This allowed us to perform a comprehensive analysis of the asteroids rotational evolution. Furthermore, radar observations from the Arecibo Observatory enabled us to generate a detailed shape model. We determined that (68346) is a retrograde rotator with its pole near the southern ecliptic pole, within a $ 15^circ$ radius of longitude $ 170^circ$ and latitude $ -85^circ$. By combining our radar-derived shape model with the optical light curves we developed a refined solution to fit all available data, which required a YORP strength of $ (8.43pm0.69)times10^{-8} rm~rad ~day^{-2} $. (68346) has a distinct bifurcated shape comprising a large ellipsoidal component joined by a sharp neckline to a smaller non-ellipsoidal component. This object likely formed from either the gentle merging of a binary system, or from the deformation of a rubble pile due to YORP spin-up. The shape exists in a stable configuration close to its minimum in topographic variation, where regolith is unlikely to migrate from areas of higher potential.
This paper presents a radar cross-section (RCS)-based statistical recognition system for identifying/ classifying unmanned aerial vehicles (UAVs) at microwave frequencies. First, the paper presents the results of the vertical (VV) and horizontal (HH) polarization RCS measurement of six commercial UAVs at 15 GHz and 25 GHz in a compact range anechoic chamber. The measurement results show that the average RCS of the UAVs depends on shape, size, material composition of the target UAV as well as the azimuth angle, frequency, and polarization of the illuminating radar. Afterward, radar characterization of the target UAVs is achieved by fitting the RCS measurement data to 11 different statistical models. From the model selection analysis, we observe that the lognormal, generalized extreme value, and gamma distributions are most suitable for modeling the RCS of the commercial UAVs while the Gaussian distribution performed relatively poorly. The best UAV radar statistics forms the class conditional probability densities for the proposed UAV statistical recognition system. The performance of the UAV statistical recognition system is evaluated at different signal noise ratio (SNR) with the aid of Monte Carlo analysis. At an SNR of 10 dB, the average classification accuracy of 97.43% or better is achievable.
In recent works we discussed the feasibility of the radar detection technique as a new method to probe high-energy cosmic-neutrino induced plasmas in ice. Using the different properties of the induced ionization plasma, an energy threshold of several PeV was derived for the over-dense scattering of a radio wave off the plasma. Next to this energy threshold the radar return power was determined for the different constituents of the plasma. It followed that the return signal should be detectable at a distance of several hundreds of meters to a few kilometers, depending on the plasma constituents and considered geometry. In this article we describe a more detailed modeling of the scattering process by expanding our model to include the full shower geometry, as well as the reflection off the under-dense plasma region. We include skin-effects, as well as the angular dependence of the scattered signal. As a first application of this more detailed modeling approach, we provide the effective area and sensitivity for a simplified detector setup. It follows that, depending on the detailed plasma properties, the radar detection technique provides a very promising method for the detection of neutrino induced particle cascades at energies above several PeV. Nevertheless, to determine the feasibility of the method more detailed information about the plasma properties, especially its lifetime and the free charge collision rate, are needed.
Context. Radar scattering from meteor trails depends on several poorly constrained quantities, such as electron line density, q, initial trail radius, r0, and ambipolar diffusion coefficient, D. Aims. The goal is to apply a numerical model of full wa ve backscatter to triple frequency echo measurements to validate theory and constrain estimates of electron radial distribution, initial trail radius, and the ambipolar diffusion coefficient. Methods. A selection of 50 transversely polarized and 50 parallel polarized echoes with complete trajectory information were identified from simultaneous tri-frequency echoes recorded by the Canadian Meteor Orbit Radar (CMOR). The amplitude-time profile of each echo was fit to our model using three different choices for the radial electron distribution assuming a Gaussian, parabolicexponential, and 1-by-r2 electron line density model. The observations were manually fit by varying, q, r0, and D per model until all three synthetic echo-amplitude profiles at each frequency matched observation. Results. The Gaussian radial electron distribution was the most successful at fitting echo power profiles, followed by the 1-by-r2. We were unable to fit any echoes using a profile where electron density varied from the trail axis as an exponential-parabolic distribution. While fewer than 5% of all examined echoes had self-consistent fits, the estimates of r0 and D as a function of height obtained were broadly similar to earlier studies, though with considerable scatter. Most meteor echoes are found to not be described well by the idealized full wave scattering model.
We observed the near-Earth asteroid 2008 EV5 with the Arecibo and Goldstone planetary radars and the Very Long Baseline Array during December 2008. EV5 rotates retrograde and its overall shape is a 400 /pm 50 m oblate spheroid. The most prominent sur face feature is a ridge parallel to the asteroids equator that is broken by a concavity 150 m in diameter. Otherwise the asteroids surface is notably smooth on decameter scales. EV5s radar and optical albedos are consistent with either rocky or stony-iron composition. The equatorial ridge is similar to structure seen on the rubble-pile near-Earth asteroid (66391) 1999 KW4 and is consistent with YORP spin-up reconfiguring the asteroid in the past. We interpret the concavity as an impact crater. Shaking during the impact and later regolith redistribution may have erased smaller features, explaining the general lack of decameter-scale surface structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا