ترغب بنشر مسار تعليمي؟ اضغط هنا

Coprime Ehrhart theory and counting free segments

53   0   0.0 ( 0 )
 نشر من قبل Raman Sanyal
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A lattice polytope is free (or empty) if its vertices are the only lattice points it contains. In the context of valuation theory, Klain (1999) proposed to study the functions $alpha_i(P;n)$ that count the number of free polytopes in $nP$ with $i$ vertices. For $i=1$, this is the famous Ehrhart polynomial. For $i > 3$, the computation is likely impossible and for $i=2,3$ computationally challenging. In this paper, we develop a theory of coprime Ehrhart functions, that count lattice points with relatively prime coordinates, and use it to compute $alpha_2(P;n)$ for unimodular simplices. We show that the coprime Ehrhart function can be explicitly determined from the Ehrhart polynomial and we give some applications to combinatorial counting.



قيم البحث

اقرأ أيضاً

We describe several experimental results obtained in four candidates social choice elections. These include the Condorcet and Borda paradoxes, as well as the Condorcet efficiency of plurality voting with runoff. The computations are done by Normaliz. It finds precise probabilities as volumes of polytopes and counting functions encoded as Ehrhart series of polytopes.
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449--1466]. For a given semi-rational polytope P and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope P parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.
A coprime labeling of a simple graph of order $n$ is a labeling in which adjacent vertices are given relatively prime labels, and a graph is prime if the labels used can be taken to be the first $n$ positive integers. In this paper, we consider when ladder graphs are prime and when the corresponding labeling may be done in a cyclic manner around the vertices of the ladder. Furthermore, we discuss coprime labelings for complete bipartite graphs.
Let $P(b)subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=sum_{y}int_{P(b)cap (y+L)} h(x) mathrm dx, $$ where w e integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $bin R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $kleq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinoks patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $bmapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.
The univariate Ehrhart and $h^*$-polynomials of lattice polytopes have been widely studied. We describe methods from toric geometry for computing multivaria
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا