The univariate Ehrhart and $h^*$-polynomials of lattice polytopes have been widely studied. We describe methods from toric geometry for computing multivaria
Let $P(b)subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=sum_{y}int_{P(b)cap (y+L)} h(x) mathrm dx, $$ where w
e integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $bin R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $kleq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinoks patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $bmapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.
It was observed by Bump et al. that Ehrhart polynomials in a special family exhibit properties similar to the Riemann {zeta} function. The construction was generalized by Matsui et al. to a larger family of reflexive polytopes coming from graphs. We
prove several conjectures confirming when such polynomials have zeros on a certain line in the complex plane. Our main new method is to prove a stronger property called interlacing.
In recent joint work (2021), we introduced a novel multivariate polynomial attached to every metric space - in particular, to every finite simple connected graph $G$ - and showed it has several attractive properties. First, it is multi-affine and rea
l-stable (leading to a hitherto unstudied delta-matroid for each graph $G$). Second, the polynomial specializes to (a transform of) the characteristic polynomial $chi_{D_G}$ of the distance matrix $D_G$; as well as recovers the entire graph, where $chi_{D_G}$ cannot do so. Third, the polynomial encodes the determinants of a family of graphs formed from $G$, called the blowups of $G$. In this short note, we exhibit the applicability of these tools and techniques to other graph-matrices and their characteristic polynomials. As a particular case, we will see that the adjacency characteristic polynomial $chi_{A_G}$ is in fact the shadow of a richer multivariate blowup-polynomial, which is similarly multi-affine and real-stable. Moreover, this polynomial encodes not only the aforementioned three properties, but also yields additional information for specific families of graphs.
The scissors congruence conjecture for the unimodular group is an analogue of Hilberts third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose v
ertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of polytopes. The key ingredient in the proofs is the nearest neighbor interchange on graphs and a naturally arising piecewise unimodular transformation.
A graph whose nodes have degree 1 or 3 is called a ${1,3}$-graph. Liu and Osserman associated a polytope to each ${1,3}$-graph and studied the Ehrhart quasi-polynomials of these polytopes. They showed that the vertices of these polytopes have coordin
ates in the set ${0,frac14,frac12,1}$, which implies that the period of their Ehrhart quasi-polynomials is either 1, 2, or 4. We show that the period of the Ehrhart quasi-polynomial of these polytopes is at most 2 if the graph is a tree or a cubic graph, and it is equal to 4 otherwise. In the process of proving this theorem, several interesting combinatorial and geometric properties of these polytopes were uncovered, arising from the structure of their associated graphs. The tools developed here may find other applications in the study of Ehrhart quasi-polynomials and enumeration problems for other polytopes that arise from graphs. Additionally, we have identified some interesting connections with triangulations of 3-manifolds.