ﻻ يوجد ملخص باللغة العربية
We present a technique that enables the evaluation of perturbative expansions based on one-loop-renormalized vertices up to large expansion orders. Specifically, we show how to compute large-order corrections to the random phase approximation in either the particle-hole or particle-particle channels. The algorithms efficiency is achieved by the summation over contributions of all symmetrized Feynman diagram topologies using determinants, and by integrating out analytically the two-body long-range interactions in order to yield an effective zero-range interaction. Notably, the exponential scaling of the algorithm as a function of perturbation order leads to a polynomial scaling of the approximation error with computational time for a convergent series. To assess the performance of our approach, we apply it to the non-perturbative regime of the square-lattice fermionic Hubbard model away from half-filling and report, as compared to the bare interaction expansion algorithm, significant improvements of the Monte Carlo variance as well as the convergence properties of the resulting perturbative series.
We present a simple trick that allows to consider the sum of all connected Feynman diagrams at fixed position of interaction vertices for general fermionic models. With our approach one achieves superior performance compared to Diagrammatic Monte Car
In this note, we present an efficient algorithm to sample directly the self-energy in the framework of the Connected Determinant technique. The introduction of the formalism of many-variable formal power series is essential to the proof, and more gen
Diagrammatic expansions are a central tool for treating correlated electron systems. At thermal equilibrium, they are most naturally defined within the Matsubara formalism. However, extracting any dynamic response function from a Matsubara calculatio
We propose a novel approach to nonequilibrium real-time dynamics of quantum impurities models coupled to biased non-interacting leads, such as those relevant to quantum transport in nanoscale molecular devices. The method is based on a Diagrammatic M
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially r