ﻻ يوجد ملخص باللغة العربية
In this note, we present an efficient algorithm to sample directly the self-energy in the framework of the Connected Determinant technique. The introduction of the formalism of many-variable formal power series is essential to the proof, and more generally it is a natural mathematical tool for diagrammatic expansions.
We present a technique that enables the evaluation of perturbative expansions based on one-loop-renormalized vertices up to large expansion orders. Specifically, we show how to compute large-order corrections to the random phase approximation in eith
We present a simple trick that allows to consider the sum of all connected Feynman diagrams at fixed position of interaction vertices for general fermionic models. With our approach one achieves superior performance compared to Diagrammatic Monte Car
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially r
The Kondo and Periodic Anderson models describe many of the qualitative features of local moments coupled to a conduction band, and thereby the physics of materials such as the heavy fermions. In particular, when the exchange coupling $J$ or hybridiz
The superconducting (SC) and charge-density-wave (CDW) susceptibilities of the two dimensional Holstein model are computed using determinant quantum Monte Carlo (DQMC), and compared with results computed using the Migdal-Eliashberg (ME) approach. We