ﻻ يوجد ملخص باللغة العربية
A considerable experimental effort is currently under way to test the persistent hints for oscillations due to an eV-scale sterile neutrino in the data of various reactor neutrino experiments. The assessment of the statistical significance of these hints is usually based on Wilks theorem, whereby the assumption is made that the log-likelihood is $chi^2$-distributed. However, it is well known that the preconditions for the validity of Wilks theorem are not fulfilled for neutrino oscillation experiments. In this work we derive a simple asymptotic form of the actual distribution of the log-likelihood based on reinterpreting the problem as fitting white Gaussian noise. From this formalism we show that, even in the absence of a sterile neutrino, the expectation value for the maximum likelihood estimate of the mixing angle remains non-zero with attendant large values of the log-likelihood. Our analytical results are then confirmed by numerical simulations of a toy reactor experiment. Finally, we apply this framework to the data of the Neutrino-4 experiment and show that the null hypothesis of no-oscillation is rejected at the 2.6,$sigma$ level, compared to 3.2,$sigma$ obtained under the assumption that Wilks theorem applies.
We study the optimization of a green-field, two-baseline reactor experiment with respect to the sensitivity for electron antineutrino disappearance in search of a light sterile neutrino. We consider both commercial and research reactors and identify
We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standar
Neutrino oscillations physics is entered in the precision era. In this context accelerator-based neutrino experiments need a reduction of systematic errors to the level of a few percent. Today one of the most important sources of systematic errors ar
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Anti
The transition magnetic moment of a sterile-to-active neutrino conversion gives rise to not only radiative decay of a sterile neutrino, but also its non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidat