ﻻ يوجد ملخص باللغة العربية
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Antineutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
The compact material irradiation facility (CMIF) is a current project in China that will provide a compact deuteron-beryllium neutron source. The target of this facility will be an intense and compact Isotope Decay-At-Rest (IsoDAR) neutrino source. I
In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l
We report on the initial results from a measurement of the anti-neutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. W
At the 17th J-PARC PAC, which was held on September 2013, we proposed the sterile neutrino search at J-PARC MLF. After reviewing the proposal, PAC recommended to have a background measurement at the detectors candidate site location in their report t
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. A moveable detector, protected with pa