ﻻ يوجد ملخص باللغة العربية
We investigate the effects of finite baryon density and temperature on the bulk properties of matter formed in relativistic heavy ion collisions within second-order dissipative hydrodynamics. The relativistic fluid evolution equations for heat flow and shear stress tensor are derived from kinetic theory by using Grads 14-moment approximation for the single-particle phase-space distribution function. The new equations provide a number of additional terms associated with heat-shear couplings as compared to the existing derivations based on entropy principle. The dissipative equations are encoded in non-boost-invariant hydrodynamic model simulation and studied for the evolution of high baryon density matter encountered at the beam energy scan program at RHIC. We find that thermal dissipation dominates shear pressure in defining the bulk observables at the low energy but its effect diminishes at ultra-relativistic energies.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr
We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energ
The hot and dense matter generated in heavy-ion collisions contains intricate vortical structure in which the local fluid vorticity can be very large. Such vorticity can polarize the spin of the produced particles. We study the event-by-event generat
We develop for charmed hadron production in relativistic heavy-ion collisions a comprehensive coalescence model that includes an extensive set of $s$ and $p$-wave hadronic states as well as the strict energy-momentum conservation, which ensures the b
Based on a generalized side-jump formalism for massless chiral fermions, which naturally takes into account the spin-orbit coupling in the scattering of two chiral fermions and the chiral vortical effect in a rotating chiral fermion matter, we have d