ﻻ يوجد ملخص باللغة العربية
In this study, the crack propagation of the pre-cracked mono-crystal nickel with the voids and inclusions has been investigated by molecular dynamics simulations. Different sizes of voids, inclusions and materials of inclusions are used to fully study the effect of the voids and inclusions during the crack propagation process. The dislocations evolution, stress distribution and crack length are analyzed as the associated mechanical properties. The results indicate that the voids and inclusions can change the path of crack propagation of the pre-cracked mono-crystal nickel. Moreover, the results show that the voids and inclusions can lead a better resistance to plastic deformation of the mono-crystal and the inclusions can make the system more difficult to fracture.
The melting and crystallization of Al50Ni50} are studied by means of molecular dynamics computer simulations, using a potential of the embedded atom type to model the interactions between the particles. Systems in a slab geometry are simulated where
The mobility of polymer chains in perfect polyethylene (PE) crystal was calculated as a function of temperature and chain length through Molecular dynamics (MD) in united atom approximation. The results demonstrate that the chain mobility drastically
A high fidelity multi-physics Eulerian computational framework is presented for the simulation of supersonic parachute inflation during Mars landing. Unlike previous investigations in this area, the framework takes into account an initial folding pat
Primary {gamma} phase instead of carbides and borides plays an important role in suppressing grain growth during solution at 1433K of FGH98 nickel-based polycrystalline alloys. Results illustrate that as-fabricated FGH98 has equiaxed grain structure
We show that for the simulation of crack propagation in quasi-brittle, two-dimensional solids, very good results can be obtained with an embedded strong discontinuity quadrilateral finite element that has incompatible modes. Even more importantly, we