ترغب بنشر مسار تعليمي؟ اضغط هنا

Crack propagation simulation without crack tracking algorithm: embedded discontinuity formulation with incompatible modes

134   0   0.0 ( 0 )
 نشر من قبل Andjelka Stanic
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that for the simulation of crack propagation in quasi-brittle, two-dimensional solids, very good results can be obtained with an embedded strong discontinuity quadrilateral finite element that has incompatible modes. Even more importantly, we demonstrate that these results can be obtained without using a crack tracking algorithm. Therefore, the simulation of crack patterns with several cracks, including branching, becomes possible. The avoidance of a tracking algorithm is mainly enabled by the application of a novel, local (Gauss-point based) criterion for crack nucleation, which determines the time of embedding the localisation line as well as its position and orientation. We treat the crack evolution in terms of a thermodynamical framework, with softening variables describing internal dissipative mechanisms of material degradation. As presented by numerical examples, many elements in the mesh may develop a crack, but only some of them actually open and/or slide, dissipate fracture energy, and eventually form the crack pattern. The novel approach has been implemented for statics and dynamics, and the results of computed difficult examples (including Kalthoffs test) illustrate its very satisfying performance. It effectively overcomes unfavourable restrictions of the standard embedded strong discontinuity formulations, namely the simulation of the propagation of a single crack only. Moreover, it is computationally fast and straightforward to implement. Our numerical solutions match the results of experimental tests and previously reported numerical results in terms of crack pattern, dissipated fracture energy, and load-displacement curve.



قيم البحث

اقرأ أيضاً

177 - Zhenxing Cheng , Hu Wang 2017
This study suggests a fast computational method for crack propagation, which is based on the extended finite element method (X-FEM). It is well known that the X-FEM might be the most popular numerical method for crack propagation. However, with the i ncrease of complexity of the given problem, the size of FE model and the number of iterative steps are increased correspondingly. To improve the efficiency of X-FEM, an efficient computational method termed decomposed updating reanalysis (DUR) method is suggested. For most of X-FEM simulation procedures, the change of each iterative step is small and it will only lead a local change of stiffness matrix. Therefore, the DUR method is proposed to predict the modified response by only calculating the changed part of equilibrium equations. Compared with other fast computational methods, the distinctive characteristic of the proposed method is to update the modified stiffness matrix with a local updating strategy, which only the changed part of stiffness matrix needs to be updated. To verify the performance of the DUR method, several typical numerical examples have been analyzed and the results demonstrate that this method is a highly efficient method with high accuracy.
A hybrid surface integral equation partial differential equation (SIE-PDE) formulation without the boundary condition requirement is proposed to solve the electromagnetic problems. In the proposed formulation, the computational domain is decomposed i nto two emph{overlapping} domains: the SIE and PDE domains. In the SIE domain, complex structures with piecewise homogeneous media, e.g., highly conductive media, are included. An equivalent model for those structures is constructed through replacing them by the background medium and introducing a surface equivalent electric current density on an enclosed boundary to represent their electromagnetic effects. The remaining computational domain and homogeneous background medium replaced domain consist of the PDE domain, in which inhomogeneous or non-isotropic media are included. Through combining the surface equivalent electric current density and the inhomogeneous Helmholtz equation, a hybrid SIE-PDE formulation is derived. Unlike other hybrid formulations, where the transmission condition is usually used, no boundary conditions are required in the proposed SIE-PDE formulation, and it is mathematically equivalent to the original physical model. Through careful construction of basis functions to expand electric fields and the equivalent current density, the discretized formulation is compatible on the interface of the SIE and PDE domain. Finally, its accuracy and efficiency are validated through two numerical examples. Results show that the proposed SIE-PDE formulation can obtain accurate results including both near and far fields, and significant performance improvements in terms of CPU time and memory consumption compared with the FEM are achieved.
A representative volume element (RVE) based multi-scale method is proposed to investigate the mechanism of fatigue crack propagation by the molecular dynamics (MD) and the extended finite element methods(XFEM) in this study. An atomic model of carbon steel plate is built to study the behavior of fatigue crack at the micro scale by MD method. Then the RVE model for fatigue crack propagation should be built by fitting the data which was obtained from the MD result with the Paris law model. Moreover, the effect of micro-structural defects including interstitial atoms, vacancies have also been considered in this study. The results indicate that the micro-structural defects can deeply influence the values of Paris law constants and the life of the specimen can be evaluated by the proposed method.
The Lorentz equations describe the motion of electrically charged particles in electric and magnetic fields and are used widely in plasma physics. The most popular numerical algorithm for solving them is the Boris method, a variant of the Stormer-Ver let algorithm. Boris method is phase space volume conserving and simulated particles typically remain near the correct trajectory. However, it is only second order accurate. Therefore, in scenarios where it is not enough to know that a particle stays on the right trajectory but one needs to know where on the trajectory the particle is at a given time, Boris method requires very small time steps to deliver accurate phase information, making it computationally expensive. We derive an improved version of the high-order Boris spectral deferred correction algorithm (Boris-SDC) by adopting a convergence acceleration strategy for second order problems based on the Generalised Minimum Residual (GMRES) method. Our new algorithm is easy to implement as it still relies on the standard Boris method. Like Boris-SDC it can deliver arbitrary order of accuracy through simple changes of runtime parameter but possesses better long-term energy stability. We demonstrate for two examples, a magnetic mirror trap and the Solevev equilibrium, that the new method can deliver better accuracy at lower computational cost compared to the standard Boris method. While our examples are motivated by tracking ions in the magnetic field of a nuclear fusion reactor, the introduced algorithm can potentially deliver similar improvements in efficiency for other applications.
124 - Zhenxing Cheng , Hu Wang 2021
In this study, a multi-grid sampling multi-scale (MGSMS) method is proposed by coupling with finite element (FEM), extended finite element (XFEM) and molecular dynamics (MD) methods.Crack is studied comprehensively from microscopic initiations to mac roscopic propagation by MGSMS method. In order to establish the coupling relationship between macroscopic and microscopic model, multi-grid FEM is used to transmit the macroscopic displacement boundary conditions to the atomic model and the multi-grid XFEM is used to feedback the microscopic crack initiations to the macroscopic model. Moreover, an image recognition based crack extracting method is proposed to extract the crack coordinate from the MD result files of efficiently and the Latin hypercube sampling method is used to reduce the computational cost of MD. Numerical results show that MGSMS method can be used to calculate micro-crack initiations and transmit it to the macro-crack model. The crack initiation and propagation simulation of plate under mode I loading is completed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا