ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar dynamo cycle variations with a rotational period

127   0   0.0 ( 0 )
 نشر من قبل Valery Pipin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.V. Pipin




اسأل ChatGPT حول البحث

Using the non-linear mean-field dynamo models we calculate the magnetic cycle parameters, like the dynamo cycle period, the amplitude of the total magnetic energy, and the Poynting flux luminosity from the surface for the solar analogs with rotation periods of range from 1 to 30 days. We do simulations both for the kinematic and non-kinematic dynamo models. The kinematic dynamo models, which take into account the non-linear $alpha$-effect and the loss of the magnetic flux due to magnetic buoyancy, show a decrease of the magnetic cycle with the decrease of the stellar rotation period. The stars with a rotational period of less than 10 days show the non-stationary long-term variations of the magnetic activity. The non-kinematic dynamo models take into account the magnetic field feedback on the large-scale flow and heat transport inside the convection zone. They show the non-monotonic variation of the dynamo period with the rotation rate. The models for the rotational periods fewer than 10 days show the non-stationary evolution with a slight increase in the primary dynamo period with the increase of the rotation rate. The non-kinematic models show the growth of the dynamo generated magnetic flux with the increase of the rotation rate. There is a dynamo saturation for the star rotating with a period of two days and less. The saturation of the magnetic activity parameters is accompanied by depression of the differential rotation.



قيم البحث

اقرأ أيضاً

Solar activity cycle varies in amplitude. The last Cycle 24 is the weakest in the past century. Suns activity dominates Earths space environment. The frequency and intensity of the Suns activity are accordant with the solar cycle. Hence there are pra ctical needs to know the amplitude of the upcoming Cycle 25. The dynamo-based solar cycle predictions not only provide predictions, but also offer an effective way to evaluate our understanding of the solar cycle. In this article we apply the method of the first successful dynamo-based prediction developed for Cycle 24 to the prediction of Cycle 25, so that we can verify whether the previous success is repeatable. The prediction shows that Cycle 25 would be about 10% stronger than Cycle 24 with an amplitude of 126 (international sunspot number version 2.0). The result suggests that Cycle 25 will not enter the Maunder-like grand solar minimum as suggested by some publications. Solar behavior in about four to five years will give a verdict whether the prediction method captures the key mechanism for solar cycle variability, which is assumed as the polar field around the cycle minimum in the model.
We compare spectra of the zonal harmonics of the large-scale magnetic field of the Sun using observation results and solar dynamo models. The main solar activity cycle as recorded in these tracers is a much more complicated phenomenon than the eigen solution of solar dynamo equations with the growth saturated by a back reaction of the dynamo-driven magnetic field on solar hydrodynamics. The nominal 11(22)-year cycle as recorded in each mode has a specific phase shift varying from cycle to cycle; the actual length of the cycle varies from one cycle to another and from tracer to tracer. Both the observation and the dynamo model show an exceptional role of the axisymmetric $ell_{5}$ mode. Its origin seems to be readily connected with the formation and evolution of sunspots on the solar surface. The results of observations and dynamo models show a good agreement for the low $ell_{1}$ and $ell_{3}$ modes. The results for these modes do not differ significantly for the axisymmetric and nonaxisymmetric models. Our findings support the idea that the sources of the solar dynamo arise as a result of both the distributed dynamo processes in the bulk of the convection zone and the surface magnetic activity.
Solar magnetic activity shows both smooth secular changes, such as the Grand Modern Maximum, and quite abrupt drops that are denoted as Grand Minima. Direct numerical simulations (DNS) of convection driven dynamos offer one way of examining the mecha nisms behind these events. In this work, we analyze a solution of a solar-like DNS that has been evolved for roughly 80 magnetic cycles of 4.9 years, during which epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. The DNS employed is a semi-global (wedge) magnetoconvection model. For data analysis we use Ensemble Empirical Mode Decomposition (EEMD) and phase dispersion ($D^2$) methods. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like. This mode is accompanied by a higher frequency mode near the surface and a low-frequency mode in the bottom of the convection zone. The overall behavior of the dynamo solution is very complex exhibiting variable cycle lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most prominent suppressed surface activity epoch is actually a global magnetic energy maximum. We interpret the overall irregular behavior to be due to the interplay of the different dynamo modes showing different equatorial symmetries, especially the smoother part of the irregular variations being related to the variations of the mode strengths, evolving with different and variable cycle lengths. The abrupt low activity epoch in the dominant dynamo mode near the surface is related to a strong maximum of the bottom toroidal field strength, which causes abrupt disturbances especially in the differential rotation profile via the suppression of the Reynolds stresses.
The variability of the spectral solar irradiance (SSI) over the course of the 11-year solar cycle is one of the manifestations of solar magnetic activity. There is a strong evidence that the SSI variability has an effect on the Earths atmosphere. The faster rotation of the Sun in the past lead to a more vigorous action of solar dynamo and thus potentially to larger amplitude of the SSI variability on the timescale of the solar activity cycle. This could led to a stronger response of the Earths atmosphere as well as other solar system planets atmospheres to the solar activity cycle. We calculate the amplitude of the SSI and TSI variability over the course of the solar activity cycle as a function of solar age. We employ the relationship between the stellar magnetic activity and the age based on observations of solar twins. Using this relation we reconstruct solar magnetic activity and the corresponding solar disk area coverages by magnetic features (i.e. spots and faculae) over the last four billion years. These disk coverages are then used to calculate the amplitude of the solar-cycle SSI variability as a function of wavelength and solar age. Our calculations show that the young Sun was significantly more variable than the present Sun. The amplitude of the solar-cycle Total Solar Irradiance (TSI) variability of the 600 Myr old Sun was about 10 times larger than that of the present Sun. Furthermore, the variability of the young Sun was spot-dominated (the Sun being brighter at the activity minimum than in the maximum), i.e. the Sun was overall brighter at activity minima than at maxima. The amplitude of the TSI variability decreased with solar age until it reached a minimum value at 2.8 Gyr. After this point, the TSI variability is faculae-dominated (the Sun is brighter at the activity maximum) and its amplitude increases with age.
The Sun, aside from its eleven year sunspot cycle is additionally subject to long term variation in its activity. In this work we analyse a solar-like convective dynamo simulation, containing approximately 60 magnetic cycles, exhibiting equatorward p ropagation of the magnetic field, multiple frequencies, and irregular variability, including a missed cycle and complex parity transitions between dipolar and quadrupolar modes. We compute the turbulent transport coefficients, describing the effects of the turbulent velocity field on the mean magnetic field, using the test-field method. The test-field analysis provides a plausible explanation of the missing cycle in terms of the reduction of $alpha_{phiphi}$ in advance of the reduced surface activity, and enhanced downward turbulent pumping during the event to confine some of the magnetic field at the bottom of the convection zone, where local maximum of magnetic energy is observed during the event. At the same time, however, a quenching of the turbulent magnetic diffusivities is observed, albeit differently distributed in depth compared to the other transport coefficients. Therefore, dedicated mean-field modelling is required for verification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا