ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple dynamo modes as a mechanism for long-term solar activity variations

263   0   0.0 ( 0 )
 نشر من قبل Maarit K\\\"apyl\\\"a
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar magnetic activity shows both smooth secular changes, such as the Grand Modern Maximum, and quite abrupt drops that are denoted as Grand Minima. Direct numerical simulations (DNS) of convection driven dynamos offer one way of examining the mechanisms behind these events. In this work, we analyze a solution of a solar-like DNS that has been evolved for roughly 80 magnetic cycles of 4.9 years, during which epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. The DNS employed is a semi-global (wedge) magnetoconvection model. For data analysis we use Ensemble Empirical Mode Decomposition (EEMD) and phase dispersion ($D^2$) methods. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like. This mode is accompanied by a higher frequency mode near the surface and a low-frequency mode in the bottom of the convection zone. The overall behavior of the dynamo solution is very complex exhibiting variable cycle lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most prominent suppressed surface activity epoch is actually a global magnetic energy maximum. We interpret the overall irregular behavior to be due to the interplay of the different dynamo modes showing different equatorial symmetries, especially the smoother part of the irregular variations being related to the variations of the mode strengths, evolving with different and variable cycle lengths. The abrupt low activity epoch in the dominant dynamo mode near the surface is related to a strong maximum of the bottom toroidal field strength, which causes abrupt disturbances especially in the differential rotation profile via the suppression of the Reynolds stresses.



قيم البحث

اقرأ أيضاً

The Sun, aside from its eleven year sunspot cycle is additionally subject to long term variation in its activity. In this work we analyse a solar-like convective dynamo simulation, containing approximately 60 magnetic cycles, exhibiting equatorward p ropagation of the magnetic field, multiple frequencies, and irregular variability, including a missed cycle and complex parity transitions between dipolar and quadrupolar modes. We compute the turbulent transport coefficients, describing the effects of the turbulent velocity field on the mean magnetic field, using the test-field method. The test-field analysis provides a plausible explanation of the missing cycle in terms of the reduction of $alpha_{phiphi}$ in advance of the reduced surface activity, and enhanced downward turbulent pumping during the event to confine some of the magnetic field at the bottom of the convection zone, where local maximum of magnetic energy is observed during the event. At the same time, however, a quenching of the turbulent magnetic diffusivities is observed, albeit differently distributed in depth compared to the other transport coefficients. Therefore, dedicated mean-field modelling is required for verification.
Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically cha nge the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods. We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations. Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2-10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities. We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We conclude that our analysis constitutes the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle.
126 - V.V. Pipin 2020
Using the non-linear mean-field dynamo models we calculate the magnetic cycle parameters, like the dynamo cycle period, the amplitude of the total magnetic energy, and the Poynting flux luminosity from the surface for the solar analogs with rotation periods of range from 1 to 30 days. We do simulations both for the kinematic and non-kinematic dynamo models. The kinematic dynamo models, which take into account the non-linear $alpha$-effect and the loss of the magnetic flux due to magnetic buoyancy, show a decrease of the magnetic cycle with the decrease of the stellar rotation period. The stars with a rotational period of less than 10 days show the non-stationary long-term variations of the magnetic activity. The non-kinematic dynamo models take into account the magnetic field feedback on the large-scale flow and heat transport inside the convection zone. They show the non-monotonic variation of the dynamo period with the rotation rate. The models for the rotational periods fewer than 10 days show the non-stationary evolution with a slight increase in the primary dynamo period with the increase of the rotation rate. The non-kinematic models show the growth of the dynamo generated magnetic flux with the increase of the rotation rate. There is a dynamo saturation for the star rotating with a period of two days and less. The saturation of the magnetic activity parameters is accompanied by depression of the differential rotation.
Long-term stellar activity variations can affect the detectability of long-period and Earth-analogue extrasolar planets. We have, for 54 stars, analysed the long-term trend of five activity indicators: log$R_mathrm{{HK}}$, the cross-correlation funct ion (CCF) bisector span, CCF full-width-at-half-maximum, CCF contrast, and the area of the Gaussian fit to the CCF; and studied their correlation with the RVs. The sign of the correlations appears to vary as a function of stellar spectral type, and the transition in sign signals a noteworthy change in the stellar activity properties where earlier type stars appear more plage dominated. These transitions become more clearly defined when considered as a function of the convective zone depth. Therefore, it is the convective zone depth (which can be altered by stellar metallicity) that appears to be the underlying fundamental parameter driving the observed activity correlations. In addition, for most of the stars, we find that the RVs become increasingly red-shifted as activity levels increase, which can be explained by the increase in the suppression of convective blue-shift. However, we also find a minority of stars where the RVs become increasingly blue-shifted as activity levels increase. Finally, using the correlation found between activity indicators and RVs, we removed RV signals generated by long-term changes in stellar activity. We find that performing simple cleaning of such long-term signals enables improved planet detection at longer orbital periods.
Aims. The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records a nd of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods. We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results. The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers about 20 and 67. The existence of a separate Grand minimum mode with reduced solar activity, which cannot be explained by random fluctuations of the regular mode, is confirmed at a high confidence level. The possible existence of a separate Grand maximum mode is also suggested, but the statistics is too low to reach a confident conclusion. Conclusions. The Sun is shown to operate in distinct modes - a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earths climate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا