ﻻ يوجد ملخص باللغة العربية
We investigate hadronic and leptonic scenarios for the GeV--TeV gamma-ray emission from jets of the microquasar SS 433. The emission region of the TeV photons coincides with the X-ray knots, where electrons are efficiently accelerated. On the other hand, the optical high-density filaments are also located close to the X-ray knots, which may support a hadronic scenario. We calculate multi-wavelength photon spectra of the extended jet region by solving the transport equations for the electrons and protons. We find that both hadronic and leptonic models can account for the observational data, including the latest {it Fermi} LAT result. The hadronic scenarios predict higher-energy photons than the leptonic scenarios, and future observations such as with the Cherenkov Telescope Array (CTA), the Large High-Altitude Air Shower Observatory (LHAASO), and the Southern Wide-field Gamma-ray Observatory (SWGO) may distinguish between these scenarios and unravel the emission mechanism of GeV--TeV gamma-rays. Based on our hadronic scenario, the analogy between microquasars and radio galaxies implies that the X-ray knot region of the radio-galaxy jets may accelerate heavy nuclei up to ultrahigh energies.
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati
The High Altitude Water Cherenkov (HAWC) observatory recently published the discovery of SS 433 as a TeV source, reporting the observation of multi-TeV gamma-ray emission from the jet interaction regions e1 and w1, suggesting in-situ particle acceler
The extended jets of the microquasar SS 433 have been observed in optical, radio, X-ray, and recently very-high-energy (VHE) $gamma$-rays by HAWC. The detection of HAWC $gamma$-rays with energies as great as 25 TeV motivates searches for high-energy
Microquasars, the local siblings of extragalactic quasars, are binary systems comprising a compact object and a companion star. By accreting matter from their companions, microquasars launch powerful winds and jets, influencing the interstellar envir
We calculate X-ray signal that should arise due to reflection of the putative collimated X-ray emission of the Galactic supercritical accretor SS 433 on molecular clouds in its vicinity. The molecular gas distribution in the region of interest has be