ترغب بنشر مسار تعليمي؟ اضغط هنا

GeV-TeV Counterparts of SS 433/W50 from Fermi-LAT and HAWC Observations

85   0   0.0 ( 0 )
 نشر من قبل Ke Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extended jets of the microquasar SS 433 have been observed in optical, radio, X-ray, and recently very-high-energy (VHE) $gamma$-rays by HAWC. The detection of HAWC $gamma$-rays with energies as great as 25 TeV motivates searches for high-energy $gamma$-ray counterparts in the Fermi-LAT data in the 100 MeV--300 GeV band. In this paper, we report on the first-ever joint analysis of Fermi-LAT and HAWC observations to study the spectrum and location of $gamma$-ray emission from SS~433. Our analysis finds common emission sites of GeV-to-TeV $gamma$-rays inside the eastern and western lobes of SS 433. The total flux above 1 GeV is $sim 1times10^{-10},rm cm^{-2},s^{-1}$ in both lobes. The $gamma$-ray spectrum in the eastern lobe is consistent with inverse-Compton emission by an electron population that is accelerated by jets. To explain both the GeV and TeV flux, the electrons need to have a soft intrinsic energy spectrum, or undergo a quick cooling process due to synchrotron radiation in a magnetized environment.



قيم البحث

اقرأ أيضاً

The High Altitude Water Cherenkov (HAWC) observatory recently published the discovery of SS 433 as a TeV source, reporting the observation of multi-TeV gamma-ray emission from the jet interaction regions e1 and w1, suggesting in-situ particle acceler ation. This showed the first direct evidence of acceleration in jets at energies greater than a few TeV. SS 433 was the first microquasar to be discovered and is still considered special in that the accretion is supercritical and the luminosity of the system is very high ($sim10^{40}$ erg s$^{-2}$). The lobes of the supernova remnant W 50 in which the jets terminate, about 40 parsecs from the central binary, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. SS 433 has also been a strong candidate for hadronic acceleration due to spectroscopic evidence of ionized nuclei in the inner jets. However, multiwavelength fits including the HAWC measurements favor the leptonic production of the observed gamma rays. Here, we present new follow-up measurements of the jet interaction regions of SS 433 using the most recent data from HAWC.
We investigate hadronic and leptonic scenarios for the GeV--TeV gamma-ray emission from jets of the microquasar SS 433. The emission region of the TeV photons coincides with the X-ray knots, where electrons are efficiently accelerated. On the other h and, the optical high-density filaments are also located close to the X-ray knots, which may support a hadronic scenario. We calculate multi-wavelength photon spectra of the extended jet region by solving the transport equations for the electrons and protons. We find that both hadronic and leptonic models can account for the observational data, including the latest {it Fermi} LAT result. The hadronic scenarios predict higher-energy photons than the leptonic scenarios, and future observations such as with the Cherenkov Telescope Array (CTA), the Large High-Altitude Air Shower Observatory (LHAASO), and the Southern Wide-field Gamma-ray Observatory (SWGO) may distinguish between these scenarios and unravel the emission mechanism of GeV--TeV gamma-rays. Based on our hadronic scenario, the analogy between microquasars and radio galaxies implies that the X-ray knot region of the radio-galaxy jets may accelerate heavy nuclei up to ultrahigh energies.
A number of Galactic sources emit GeV-TeV gamma rays that are produced through leptonic and/or hadronic mechanisms. Spectral analysis in this energy range is crucial in order to understand the emission mechanisms. The HAWC Gamma-Ray Observatory, with a large field of view and location at $19^circ$ N latitude, is surveying the Galactic Plane from high Galactic longitudes down to near the Galactic Center. Data taken with partially-constructed HAWC array in 2013-2014 exhibit TeV gamma-ray emission along the Galactic Plane. A high-level analysis likelihood framework for HAWC, also presented at this meeting, has been developed concurrently with the Multi-Mission Maximum Likelihood (3ML) architecture to deconvolve the Galactic sources and to perform multi-instrument analysis. It has been tested on early HAWC data and the same method will be applied on HAWC data with the full array. I will present preliminary results on Galactic sources from TeV observations with HAWC and from joint analysis on Fermi and HAWC data in GeV-TeV energy range.
The HAWC (High Altitude Water Cherenkov) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100~GeV) gamma-ray sources based on 507 days of observation. Among these, there are nineteen sources that are not associa ted with previously known TeV sources. We have studied fourteen of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1~TeV-30~TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected fourteen new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected GeV gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.
139 - Pol Bordas 2020
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati ble with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا