ﻻ يوجد ملخص باللغة العربية
Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal invariant momenta. In this work, we show that all achiral non-centrosymmetric materials with SOC can be a new class of topological materials, which we term Kramers nodal line metals (KNLMs). In KNLMs, there are doubly degenerate lines, which we call Kramers nodal lines (KNLs), connecting time-reversal invariant momenta. The KNLs create two types of Fermi surfaces, namely, the spindle torus type and the octdong type. Interestingly, all the electrons on octdong Fermi surfaces are described by two-dimensional massless Dirac Hamiltonians. These materials support quantized optical conductance in thin films. We further show that KNLMs can be regarded as parent states of KWSs. Therefore, we conclude that all non-centrosymmetric metals with SOC are topological, as they can be either KWSs or KNLMs.
For three-dimensional metals, Landau levels disperse as a function of the magnetic field and the momentum wavenumber parallel to the field. In this two-dimensional parameter space, it is shown that two conically-dispersing Landau levels can touch at
Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Neel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Neel spin-orbi
By means of first-principles calculations and modeling analysis, we have predicted that the traditional 2D-graphene hosts the topological phononic Weyl-like points (PWs) and phononic nodal line (PNL) in its phonon spectrum. The phonon dispersion of g
Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly
We present a model of a topological semimetal in three dimensions (3D) whose energy spectrum exhibits a nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke ring. Contrary to a Weyl point node s