ﻻ يوجد ملخص باللغة العربية
By means of first-principles calculations and modeling analysis, we have predicted that the traditional 2D-graphene hosts the topological phononic Weyl-like points (PWs) and phononic nodal line (PNL) in its phonon spectrum. The phonon dispersion of graphene hosts three type-I PWs (both PW1 and PW2 at the BZ corners emph{K} and emph{K}, and PW3 locating along the $Gamma$-emph{K} line), one type-II PW4 locating along the $Gamma$-emph{M} line, and one PNL surrounding the centered $Gamma$ point in the $q_{x,y}$ plane. The calculations further reveal that Berry curvatures are vanishingly zero throughout the whole BZ, except for the positions of these four pairs of Weyl-like phonons, at which the non-zero singular Berry curvatures appear with the Berry phase of $pi$ or -$pi$, confirming its topological non-trivial nature. The topologically protected non-trivial phononic edge states have been also evidenced along both the zigzag-edged and armchair-edged boundaries. These results would pave the ways for further studies of topological phononic properties of graphene, such as phononic destructive interference with a suppression of backscattering and intrinsic phononic quantum Hall-like effects.
We analyze the band topology of acoustic phonons in 2D materials by considering the interplay of spatial and internal symmetries with additional constraints that arise from the physical context. These supplemental constraints trace back to the Nambu-
Inspired by concepts developed for fermionic systems in the framework of condensed matter physics, topology and topological states are recently being explored also in bosonic systems. The possibility of engineering systems with unidirectional wave pr
Topological mechanics and phononics have recently emerged as an exciting field of study. Here we introduce and study generalizations of the three-dimensional pyrochlore lattice that have topologically protected edge states and Weyl lines in their bul
By considering analytical expressions for the self-energies of intervalley and intravalley phonons in graphene, we describe the behavior of D, 2D, and D$$ Raman bands with changes in doping ($mu$) and light excitation energy ($E_L$). Comparing the se
We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{