ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangled Multidimensional Metric Learning for Music Similarity

74   0   0.0 ( 0 )
 نشر من قبل Jongpil Lee
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Music similarity search is useful for a variety of creative tasks such as replacing one music recording with another recording with a similar feel, a common task in video editing. For this task, it is typically necessary to define a similarity metric to compare one recording to another. Music similarity, however, is hard to define and depends on multiple simultaneous notions of similarity (i.e. genre, mood, instrument, tempo). While prior work ignore this issue, we embrace this idea and introduce the concept of multidimensional similarity and unify both global and specialized similarity metrics into a single, semantically disentangled multidimensional similarity metric. To do so, we adapt a variant of deep metric learning called conditional similarity networks to the audio domain and extend it using track-based information to control the specificity of our model. We evaluate our method and show that our single, multidimensional model outperforms both specialized similarity spaces and alternative baselines. We also run a user-study and show that our approach is favored by human annotators as well.



قيم البحث

اقرأ أيضاً

Many speech processing methods based on deep learning require an automatic and differentiable audio metric for the loss function. The DPAM approach of Manocha et al. learns a full-reference metric trained directly on human judgments, and thus correla tes well with human perception. However, it requires a large number of human annotations and does not generalize well outside the range of perturbations on which it was trained. This paper introduces CDPAM, a metric that builds on and advances DPAM. The primary improvement is to combine contrastive learning and multi-dimensional representations to build robust models from limited data. In addition, we collect human judgments on triplet comparisons to improve generalization to a broader range of audio perturbations. CDPAM correlates well with human responses across nine varied datasets. We also show that adding this metric to existing speech synthesis and enhancement methods yields significant improvement, as measured by objective and subjective tests.
Deep representation learning offers a powerful paradigm for mapping input data onto an organized embedding space and is useful for many music information retrieval tasks. Two central methods for representation learning include deep metric learning an d classification, both having the same goal of learning a representation that can generalize well across tasks. Along with generalization, the emerging concept of disentangled representations is also of great interest, where multiple semantic concepts (e.g., genre, mood, instrumentation) are learned jointly but remain separable in the learned representation space. In this paper we present a single representation learning framework that elucidates the relationship between metric learning, classification, and disentanglement in a holistic manner. For this, we (1) outline past work on the relationship between metric learning and classification, (2) extend this relationship to multi-label data by exploring three different learning approaches and their disentangl
Despite speaker verification has achieved significant performance improvement with the development of deep neural networks, domain mismatch is still a challenging problem in this field. In this study, we propose a novel framework to disentangle speak er-related and domain-specific features and apply domain adaptation on the speaker-related feature space solely. Instead of performing domain adaptation directly on the feature space where domain information is not removed, using disentanglement can efficiently boost adaptation performance. To be specific, our models input speech from the source and target domains is first encoded into different latent feature spaces. The adversarial domain adaptation is conducted on the shared speaker-related feature space to encourage the property of domain-invariance. Further, we minimize the mutual information between speaker-related and domain-specific features for both domains to enforce the disentanglement. Experimental results on the VOiCES dataset demonstrate that our proposed framework can effectively generate more speaker-discriminative and domain-invariant speaker representations with a relative 20.3% reduction of EER compared to the original ResNet-based system.
We propose an audio-to-audio neural network model that learns to denoise old music recordings. Our model internally converts its input into a time-frequency representation by means of a short-time Fourier transform (STFT), and processes the resulting complex spectrogram using a convolutional neural network. The network is trained with both reconstruction and adversarial objectives on a synthetic noisy music dataset, which is created by mixing clean music with real noise samples extracted from quiet segments of old recordings. We evaluate our method quantitatively on held-out test examples of the synthetic dataset, and qualitatively by human rating on samples of actual historical recordings. Our results show that the proposed method is effective in removing noise, while preserving the quality and details of the original music.
In this paper, we introduce Foley Music, a system that can synthesize plausible music for a silent video clip about people playing musical instruments. We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings. We then formulate music generation from videos as a motion-to-MIDI translation problem. We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements. The MIDI event can then be converted to realistic music using an off-the-shelf music synthesizer tool. We demonstrate the effectiveness of our models on videos containing a variety of music performances. Experimental results show that our model outperforms several existing systems in generating music that is pleasant to listen to. More importantly, the MIDI representations are fully interpretable and transparent, thus enabling us to perform music editing flexibly. We encourage the readers to watch the demo video with audio turned on to experience the results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا