ترغب بنشر مسار تعليمي؟ اضغط هنا

DEAAN: Disentangled Embedding and Adversarial Adaptation Network for Robust Speaker Representation Learning

121   0   0.0 ( 0 )
 نشر من قبل Mufan Sang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite speaker verification has achieved significant performance improvement with the development of deep neural networks, domain mismatch is still a challenging problem in this field. In this study, we propose a novel framework to disentangle speaker-related and domain-specific features and apply domain adaptation on the speaker-related feature space solely. Instead of performing domain adaptation directly on the feature space where domain information is not removed, using disentanglement can efficiently boost adaptation performance. To be specific, our models input speech from the source and target domains is first encoded into different latent feature spaces. The adversarial domain adaptation is conducted on the shared speaker-related feature space to encourage the property of domain-invariance. Further, we minimize the mutual information between speaker-related and domain-specific features for both domains to enforce the disentanglement. Experimental results on the VOiCES dataset demonstrate that our proposed framework can effectively generate more speaker-discriminative and domain-invariant speaker representations with a relative 20.3% reduction of EER compared to the original ResNet-based system.



قيم البحث

اقرأ أيضاً

Attacking deep learning based biometric systems has drawn more and more attention with the wide deployment of fingerprint/face/speaker recognition systems, given the fact that the neural networks are vulnerable to the adversarial examples, which have been intentionally perturbed to remain almost imperceptible for human. In this paper, we demonstrated the existence of the universal adversarial perturbations~(UAPs) for the speaker recognition systems. We proposed a generative network to learn the mapping from the low-dimensional normal distribution to the UAPs subspace, then synthesize the UAPs to perturbe any input signals to spoof the well-trained speaker recognition model with high probability. Experimental results on TIMIT and LibriSpeech datasets demonstrate the effectiveness of our model.
This paper proposes novel algorithms for speaker embedding using subjective inter-speaker similarity based on deep neural networks (DNNs). Although conventional DNN-based speaker embedding such as a $d$-vector can be applied to multi-speaker modeling in speech synthesis, it does not correlate with the subjective inter-speaker similarity and is not necessarily appropriate speaker representation for open speakers whose speech utterances are not included in the training data. We propose two training algorithms for DNN-based speaker embedding model using an inter-speaker similarity matrix obtained by large-scale subjective scoring. One is based on similarity vector embedding and trains the model to predict a vector of the similarity matrix as speaker representation. The other is based on similarity matrix embedding and trains the model to minimize the squared Frobenius norm between the similarity matrix and the Gram matrix of $d$-vectors, i.e., the inter-speaker similarity derived from the $d$-vectors. We crowdsourced the inter-speaker similarity scores of 153 Japanese female speakers, and the experimental results demonstrate that our algorithms learn speaker embedding that is highly correlated with the subjective similarity. We also apply the proposed speaker embedding to multi-speaker modeling in DNN-based speech synthesis and reveal that the proposed similarity vector embedding improves synthetic speech quality for open speakers whose speech utterances are unseen during the training.
Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.
Robust speaker recognition, including in the presence of malicious attacks, is becoming increasingly important and essential, especially due to the proliferation of several smart speakers and personal agents that interact with an individuals voice co mmands to perform diverse, and even sensitive tasks. Adversarial attack is a recently revived domain which is shown to be effective in breaking deep neural network-based classifiers, specifically, by forcing them to change their posterior distribution by only perturbing the input samples by a very small amount. Although, significant progress in this realm has been made in the computer vision domain, advances within speaker recognition is still limited. The present expository paper considers several state-of-the-art adversarial attacks to a deep speaker recognition system, employing strong defense methods as countermeasures, and reporting on several ablation studies to obtain a comprehensive understanding of the problem. The experiments show that the speaker recognition systems are vulnerable to adversarial attacks, and the strongest attacks can reduce the accuracy of the system from 94% to even 0%. The study also compares the performances of the employed defense methods in detail, and finds adversarial training based on Projected Gradient Descent (PGD) to be the best defense method in our setting. We hope that the experiments presented in this paper provide baselines that can be useful for the research community interested in further studying adversarial robustness of speaker recognition systems.
335 - Jixuan Wang , Xiong Xiao , Jian Wu 2020
Deep speaker embedding models have been commonly used as a building block for speaker diarization systems; however, the speaker embedding model is usually trained according to a global loss defined on the training data, which could be sub-optimal for distinguishing speakers locally in a specific meeting session. In this work we present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally using the structural information between speech segments inside each session. The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated. The model is trained for linkage prediction in a supervised manner by minimizing the difference between the affinity matrix constructed by the refined embeddings and the ground-truth adjacency matrix. Spectral clustering is then applied on top of the refined embeddings. We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data, and our system achieves the state-of-the-art result on the NIST SRE 2000 CALLHOME database.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا