ﻻ يوجد ملخص باللغة العربية
The current spike of hyper-realistic faces artificially generated using deepfakes calls for media forensics solutions that are tailored to video streams and work reliably with a low false alarm rate at the video level. We present a method for deepfake detection based on a two-branch network structure that isolates digitally manipulated faces by learning to amplify artifacts while suppressing the high-level face content. Unlike current methods that extract spatial frequencies as a preprocessing step, we propose a two-branch structure: one branch propagates the original information, while the other branch suppresses the face content yet amplifies multi-band frequencies using a Laplacian of Gaussian (LoG) as a bottleneck layer. To better isolate manipulated faces, we derive a novel cost function that, unlike regular classification, compresses the variability of natural faces and pushes away the unrealistic facial samples in the feature space. Our two novel components show promising results on the FaceForensics++, Celeb-DF, and Facebooks DFDC preview benchmarks, when compared to prior work. We then offer a full, detailed ablation study of our network architecture and cost function. Finally, although the bar is still high to get very remarkable figures at a very low false alarm rate, our study shows that we can achieve good video-level performance when cross-testing in terms of video-level AUC.
Deep convolutional neural networks (CNNs) have made impressive progress in many video recognition tasks such as video pose estimation and video object detection. However, CNN inference on video is computationally expensive due to processing dense fra
The spread of misinformation through synthetically generated yet realistic images and videos has become a significant problem, calling for robust manipulation detection methods. Despite the predominant effort of detecting face manipulation in still i
Automated deception detection (ADD) from real-life videos is a challenging task. It specifically needs to address two problems: (1) Both face and body contain useful cues regarding whether a subject is deceptive. How to effectively fuse the two is th
Currently, spatiotemporal features are embraced by most deep learning approaches for human action detection in videos, however, they neglect the important features in frequency domain. In this work, we propose an end-to-end network that considers the
When smartphone cameras are used to take photos of digital screens, usually moire patterns result, severely degrading photo quality. In this paper, we design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image dem