ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks (CNNs) have made impressive progress in many video recognition tasks such as video pose estimation and video object detection. However, CNN inference on video is computationally expensive due to processing dense frames individually. In this work, we propose a framework called Recurrent Residual Module (RRM) to accelerate the CNN inference for video recognition tasks. This framework has a novel design of using the similarity of the intermediate feature maps of two consecutive frames, to largely reduce the redundant computation. One unique property of the proposed method compared to previous work is that feature maps of each frame are precisely computed. The experiments show that, while maintaining the similar recognition performance, our RRM yields averagely 2x acceleration on the commonly used CNNs such as AlexNet, ResNet, deep compression model (thus 8-12x faster than the original dense models using the efficient inference engine), and impressively 9x acceleration on some binary networks such as XNOR-Nets (thus 500x faster than the original model). We further verify the effectiveness of the RRM on speeding up CNNs for video pose estimation and video object detection.
The spread of misinformation through synthetically generated yet realistic images and videos has become a significant problem, calling for robust manipulation detection methods. Despite the predominant effort of detecting face manipulation in still i
The current spike of hyper-realistic faces artificially generated using deepfakes calls for media forensics solutions that are tailored to video streams and work reliably with a low false alarm rate at the video level. We present a method for deepfak
We present a method for decomposing the 3D scene flow observed from a moving stereo rig into stationary scene elements and dynamic object motion. Our unsupervised learning framework jointly reasons about the camera motion, optical flow, and 3D motion
Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However,
Instance segmentation is a key step for quantitative microscopy. While several machine learning based methods have been proposed for this problem, most of them rely on computationally complex models that are trained on surrogate tasks. Building on re