ﻻ يوجد ملخص باللغة العربية
We study maps on the set of permutations of n generated by the Renyi-Foata map intertwined with other dihedral symmetries (of a permutation considered as a 0-1 matrix). Iterating these maps leads to dynamical systems that in some cases exhibit interesting orbit structures, e.g., every orbit size being a power of two, and homomesic statistics (ones which have the same average over each orbit). In particular, the number of fixed points (aka 1-cycles) of a permutation appears to be homomesic with respect to three of these maps, even in one case where the orbit structures are far from nice. For the most interesting such Foatic action, we give a heap analysis and recursive structure that allows us to prove the fixed-point homomesy and orbit properties, but two other cases remain conjectural.
Many invertible actions $tau$ on a set ${mathcal{S}}$ of combinatorial objects, along with a natural statistic $f$ on ${mathcal{S}}$, exhibit the following property which we dub textbf{homomesy}: the average of $f$ over each $tau$-orbit in ${mathcal{
This paper presents a generalization of the sandpile model, called the parallel symmetric sandpile model, which inherits the rules of the symmetric sandpile model and implements them in parallel. In this new model, at each step the collapsing of the
Given a group $Gamma$ acting on a set $X$, a $k$-coloring $phi:Xto{1,dots,k}$ of $X$ is distinguishing with respect to $Gamma$ if the only $gammain Gamma$ that fixes $phi$ is the identity action. The distinguishing number of the action $Gamma$, denot
We provide combinatorial interpretation for the $gamma$-coefficients of the basic Eulerian polynomials that enumerate permutations by the excedance statistic and the major index as well as the corresponding $gamma$-coefficients for derangements. Our
We prove that the expected number of braid moves in the commutation class of the reduced word $(s_1 s_2 cdots s_{n-1})(s_1 s_2 cdots s_{n-2}) cdots (s_1 s_2)(s_1)$ for the long element in the symmetric group $mathfrak{S}_n$ is one. This is a variant