ﻻ يوجد ملخص باللغة العربية
We prove that the expected number of braid moves in the commutation class of the reduced word $(s_1 s_2 cdots s_{n-1})(s_1 s_2 cdots s_{n-2}) cdots (s_1 s_2)(s_1)$ for the long element in the symmetric group $mathfrak{S}_n$ is one. This is a variant of a similar result by V. Reiner, who proved that the expected number of braid moves in a random reduced word for the long element is one. The proof is bijective and uses X. Viennots theory of heaps and variants of the promotion operator. In addition, we provide a refinement of this result on orbits under the action of even and odd promotion operators. This gives an example of a homomesy for a nonabelian (dihedral) group that is not induced by an abelian subgroup. Our techniques extend to more general posets and to other statistics.
Using the standard Coxeter presentation for the symmetric group $S_n$, two reduced expressions for the same group element are said to be commutation equivalent if we can obtain one expression from the other by applying a finite sequence of commutatio
In this article we describe the summit sets in B_3, the smallest element in a summit set and we compute the Hilbert series corresponding to conjugacy classes.The results will be related to Birman-Menesco classification of knots with braid index three or less than three.
We construct a 2-representation categorifying the symmetric Howe representation of $mathfrak{gl}_m$ using a deformation of an algebra introduced by Webster. As a consequence, we obtain a categorical braid group action taking values in a homotopy category.
We study maps on the set of permutations of n generated by the Renyi-Foata map intertwined with other dihedral symmetries (of a permutation considered as a 0-1 matrix). Iterating these maps leads to dynamical systems that in some cases exhibit intere
A family of permutations $mathcal{F} subset S_{n}$ is said to be $t$-intersecting if any two permutations in $mathcal{F}$ agree on at least $t$ points. It is said to be $(t-1)$-intersection-free if no two permutations in $mathcal{F}$ agree on exactly