ﻻ يوجد ملخص باللغة العربية
We present observations of linear polarization from dust thermal emission at 850 $mu m$ towards the starless cloud L183. These data were obtained at the James Clerk Maxwell Telescope (JCMT) using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera in conjunction with its polarimeter POL-2. Polarized dust emission traces the plane-of-sky magnetic field structure in the cloud, thus allowing us to investigate the role of magnetic fields in the formation and evolution of its starless core. To interpret these measurements, we first calculate the dust temperature and column density in L183 by fitting the spectral energy distribution obtained by combining data from the JCMT and the $textit{Herschel}$ space observatory. We used the Davis-Chandrasekhar-Fermi technique to measure the magnetic field strength in five sub-regions of the cloud, and we find values ranging from $sim120pm18~mu G$ to $sim270pm64~mu G$ in agreement with previous studies. Combined with an average hydrogen column density ($N_{text{H}_2}$) of $sim 1.5 times 10^{22} $cm$^{-2}$ in the cloud, we also find that all five sub-regions are magnetically subcritical. These results indicate that the magnetic field in L183 is sufficiently strong to oppose the gravitational collapse of the cloud.
Observations carried out toward starless and pre-stellar cores have revealed that complex organic molecules are prevalent in these objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that co
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 star
We report 850~$mu$m dust polarization observations of a low-mass ($sim$12 $M_{odot}$) starless core in the $rho$ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In
(abridged) Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, us
Context. Magnetic fields can affect significantly the star formation process. The theory of the magnetically-driven collapse in a uniform field predicts that initially the contraction happens along the field lines. When the gravitational pull grows s