ﻻ يوجد ملخص باللغة العربية
Recently, a new family of symmetry-protected higher-order topological insulators has been proposed and was shown to host lower-dimensional boundary states. However, with the existence of the strong disorder in the bulk, the crystal symmetry is broken, and the associated corner states are disappeared. It is well known that the emergence of robust edge states and quantized transport can be induced by adding sufficient disorders into a topologically trivial insulator, that is the so-called topological Anderson insulator. The question is whether disorders can also cause the higher-order topological phase. This is not known so far, because interactions between disorders and the higher-order topological phases are completely different from those with the first-order topological system. Here, we demonstrate theoretically that the disorderinduced higher-order topological corner state and quantized fraction corner charge can appear in a modified Haldane model. In experiments, we construct the classical analog of such higherorder topological Anderson insulators using electric circuits and observe the disorder-induced corner state through the voltage measurement. Our work defies the conventional view that the disorder is detrimental to the higher-order topological phase, and offers a feasible platform to investigate the interaction between disorders and higher-order topological phases.
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei
The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In t
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically s
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system, giving rise to intriguing quantum states of matter. The rich interplay of disorder, non-Hermiticity, and topology is epitomized by the r